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Unit I INTRODUCTION

11 What Is the Theory of Numbera?

The theory of numbess has been characterized variously by 'different'
writers as: a' descendant of Greek "arithmetiéa". number recreations and
phzzlei which interest students of higher mathematics, the purest branch
of mathernatics, the léast applicable of aln‘mathemaeics, one of the oldest

branches of mathematics, and the most difficalt of all mathematiqa,ll disci-

pﬂines. i& is all of these and none of these, depending on your vicwpoint

it is an offsp'ring from Greek arithmetica vet mday*s number theory bears
little resenblance to the number worship of the ancient Greeks. The theory
oﬁ; ‘t‘mmb'ers is more than ar idle pastime such as rec':reaﬂzions and puzzles
might suggest, Whe&her or not the theory.of nqmber is ;onsideée';i tﬁe‘
most pﬁr_e, or léa.m applicable of mathermatics dependé on wheth:ér you are

a number theorist or not. Number theory is certainly one of the oldesg

branches of mathematics.

We cat}ﬁot allow the last characterization of number theory to go
unqualified without immediately having the question raised, "Then why
ekpect e'lemg;ntary teachers to study number theory?™ It is not expected
that ene_'zr'nenta'ry ﬁ:eachem st;xdy the .ty\pe of number theory characterized
by' “the most di’fficult of mathematical disciplines. " There are various
levels of sophistication in'thi;s f,iéld juat as fctlne.r‘e are in é.lgebra, geometry

and other fields of mathematics, This booklet will be su,cﬁ'that any elementary




teacher with a knowledge of arithmetic and an aéquaintance with set language’

will be able to follow the discussions.

We still have not answered the question, "What is number theory?"

- Pérhaps the best way to answer it is eé study some and tﬁten_ geflect on the
question again. FExplanations of unknown t‘:hings' have little meaﬁing to a
person before that person has s/an.ae'h experience wiﬁh those nnknown'thinés.

' We now proceed oﬁ that aésump&ion. however, we remark that this branch

of mathematics confines itaelf to the properties of the set of integersw-'thé

positive and negative whole numbers,

1.2. Why Should Teachers Study the Theory of Numbers?

The most o'bviov.s answer to this c{ues&ion is that many topics from the
theory ;)f numbers are finding their way into the school cnr;‘iculum at all
levels. The emphaéié in present day schoo! rmathematics is on understanding
why a.s' well as knowing how and ﬂ\gg,. Most ev"eryoné can remember 3ome

teacher who gesponded to "Why? "' questions with "That is juvst the way you
do it, don't ask me "Why?'" Hopafully, suc‘h dogmatic teaching is rapidly
becoming a thing of the past, The .el'ementalry teacher sho‘uld know the "why"
aa well as the "how" and "what" so that he or she is able to lead students to
an understanding of the why: A good grasp of the fundamental structure and

nature of mathematics is necessary for knowing why, and the theofy of numbers

contributes to this understanding.
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Another reason for having elementary't;aachérs emdy«numbei' theory
in some depth is so that they will kn@w more than they éxpect their stndents '
to learn, This knowledge will contnbute to the teacher s confndence. This
conﬁdence will in turn contribute to a healthietattxtude toward mathematics
in the clasgroom, and the students will bé'heneﬁtec‘l. if the teacher knows
more than his studerts, he win have insight into Qhat' they are going to meet
, in future matﬁematic'al studies and will realize fﬁbe imporiance of whg; he

teaches now.

Number t'heory also offers many intezesting sidelights to mathermatics
which work nicely as enrichment materials. The history of mathgmaitics |
contains rany interesting anecdotes about agmber theory which can bé usé_d
for motivating students in mathematics. Teaches‘s'wiﬁh many of these

anecdotes in their repartoire are more effective as teachers of matheratics.

Finally, teachers cannot really app_relcia&e the subject of mathema.tic'o
unless they have an opportunity to see as many facets of its as possible. They
should eec the many relationships bet@egn and the commoz‘: elements of t}ie '.
various l;rarachea of ;'na thematics. An appz'ecnah@a of the structure of mathe-
matics stemming from this mszght wnn be reﬂected in movze fruitful educattoml'

experiences for mathernatics students.,

1.3. Why Should Number Theory Be Studied in Ele.'meixt'ary School Mathematics?

/

Most of the number theory that is included in elementary texts today is

included in an incidental way. It is u‘auany. in'troz'iuce‘d in order that it may




" be used in working with some more traditional topics such as addition of
fractioi';s. A s;ction will generally not be d;voted to the study of number
theory .alone.. though there are some exceptions where topics in number

theory ére included as enrichment material and are not used in any other

way.

It is unfortunate that more number theory is not included in the elemen-
tary school mathematics cuarricvlum. It can add much to the understanding

that youngsters gain of the nature of mathematics and to their appreciation

of and attitude toward mathematics.

One problem facing all elemnentary teachere is how to get encugh drill
and review in fundamentals into their teaching. The.%*e is always the danger
that drill will become meaningless and destroy initiative if students are
assigned page after page of p;oblema to give them practice in fundamentals.
Number theory Mfers a nice soﬁueibn'fco thig dilemrma. Itisa good source
of "incideétal"' drill mat.ex'ial which focuses attention not on drill but on
some interesting axid new a.reé.a of mathematics. So; using number theory,
the students can get the .pra«ctice they n@'e& but in a péinless manner. Also,
the theory of nugixbers orovides some coucrete applicationz of whole numbers

and students will be =zl le to apply their skills to discovering some new

properties of whole numbers.

Another ever present problem faced by elementary teachers is to

motivate students and'to‘ interest them in mathematics. . The necessity of




learning addition and multiplicaticn facte and the algorithms of arithmetic
offers a real challenge to the teacher %o keep studenis’ interest. Again

the theory of numbers has some answers. The use of the history of mathe-

matics as enrichment has been mentioned previously. Many other topics

from the theory of numbers offer interesting and challenging sidelights to

the regular mathematics curziculum. It should not be inferred that such
enrichment is anplicable only to the case of the capable atudent who hae
" finished his assignment early and needs ;ometmng to cccupy him. Enrich- |
ment i3 possibly even more valvable for the slower student. Number theory (
has much to offer both of .thew students as it caﬁ offer a chall&nge to the

\

former and yield problems easily understood by the latter. Such problems
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deal with whole numbere, even numbers, odd numbers, and the four funda-

mental arithmetic operations. Comméﬁsly, envichment takes the form of
allowing & capable student tc move into matezial studied in the following
grades. If this is not desirable, the theory of numbers offers an alterna-
tive. Many topics which can be selected from this field are féund nowhere

else in the elementary school program.

! | Modern mathernatics i:regz:ams place an emphasis on helping students

to learn the structure of mathematics. Aleng with this, in the later elemen-

tary years students are exposed to some form of mathematical proof. This

is a very difficult concept for teachers az well as students to grasp. ‘Often

-

'"oroofs'' are given of statements which are obviously ¢{rue and which the

students have accepted long before. For fhia reason there is little‘ unde'ratanding
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developed of the nature of proof énd its place in mathematics. The thegry
of numbers is very Es;ui&full in offering opportuniﬁiealfor studenis to deveiop
ideas of inductive and deductive reasoning. In fact, the'y' can formulate
their own cos;jectuz-es (guesses) about zelaﬁomships between numbers and

with practice make '‘proofs’ of them. Some examples of this are shown later,

For teaching inductive and deductive methods of proof in ﬂ"ne' claseroom,
there are soimne impoz'tgnt poi'nim to be remembered, Whenevér possible,
iﬁe;s about what is to be proved'aﬁd‘ ho.w to do it should come from thg
students. They must be anll,@wéd to try and to err az?d to say what‘ they
ﬁ‘nnk Moxe mathematics is pmhabl',r learned by working problems wrong
(and having them corrected) than by working problema correctly. Creaztwnty
should be encouraged and a studem should not be stopped if he goes off on a |
tangent that appears fruitful {and m;.ayhe some which do not). He.win'learn

something abcat mathematics even if he goes uvp a blind alley.

Rigorous formal argument3 cannot be e';;pec’aed from elementary
gtudents. A mediocre proof by a student is much mére valuable than an
elegant one done by‘ the teacher., Z-lc:wma:%rc«e:s.'e a2 gross error éhould‘ not be
6verlooked and allowed to multiply itself Iaéer; If the easential ideas are

preseanted by a student's "proof’. then it should be accepted as correct.

The theory of numbers should give studénts some good ideas as to
how mathematicians work. In it they can experience c'lis'covery. intuition,
inductive and deductive reasoning and formulating (and bolding‘ to) definitions

Also, one pitfall of mathematical reasoaing can be shown vividly by topics




'from number theory. This pitfall is the tendency cf accepting a statement.
as true after cheéking it in oniy a few Speéific cases. Some examples of

this will be showr later.

It has been suggested here that the theory of numbers offers some
promise as a fruitful topic to be included in the elementary curriculum

Yor carmoa zeally judge the value of number uheory until you know some-

thmg abuaﬁt it. This is the purnose of ”&hesca umts: . Vo" will find that most
of the following topics are not new to you, but you will get a fresh look at

them from another viewpoint. We now make some general comments about

what to expect in the following units and then procee& to the theory of numbers.

"1.4. What If_s Assumed and What to Expect

Very little indication has been given yet of what mimbera we deal with
in the theory of numbers. In general, the field of number theory deals with:
the cet of integers. This includes the counting numbers, zero and the

negative integers. That is, the set of integers is the set
{ v e o ”3.‘2"’1’0’.1.&.3'... } .

The three dots at each end means that this set'__i;a_‘_'i‘jxﬁnite and that we imagine

it continued on in the same fashion in both di:ec!:ionl.

in our work here we will be é'oncei-ned with a éubset of the set of integers,

We will speak only of the set of whole numbers. This includes the couhting
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numbers and zero. The set of whole numbers, then, is
{0,1,2,3,...}

Nofe that it is also an inﬁmite' set. We will deal with various subsets of this
set; foz; example, the sets of even numbers, of odd numi:ners. of 'prime
numbers and of composite purmbers. There is an important subset which
we will not have occasion to deal with but will mention in passing here.

This is the zet of natural numbers
{1,2,3,...)

Commonly, this set is called the set of counting numbers as was done zbove.
This is a very important set for more formal studies of number theory than

we will do here.

A developmental approach will be used throughout the units. This is
done becguée it 'ga probably the most fxuézﬁu&. Alzo, it will give you an
exagnplé of the type of approach wecomr&xende«&;l often today for teuching
clementary school mathematics. Stidents are led to discover patterns and |
generalizations rather than being told them. It is hoped (and it appe‘a.rs 80}

that this leads to better undersianding of mathematical concepts.

There are some assumptions made as to previous experience of the
reader. The basic concepts and language of sets are assumed, Such terms
as subset, union of gets, intersection of sets and disjoint sets are used.

A knowledge of the basic priric"iples governing the arithmetic operations is
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also assumed. These principles are: associativity, commutativity, closure
and the existence of identity elements for addition and multipﬁicétion. and the
fact that multiplication distributes over addition. These principles are not

necessary to the deveicpiacat but they are mentioned whenever they are used,

‘necessary to the developm:ent but they ave mentioned whenever they are used.

Unit 2. PRIMES AND FACTORS

.2.b Evenress and Oddness

Of the many poaa.ibie"cllivisions of the whole nambera into sei:-s'@ disjoint"
or otherwige, we will firat consider two, the set of evea;z and the set pf ‘odd
,ﬁumbera. Whgn a child first encounterg the theory of numbers in elementary
arithmetie, it is probably in the study of some of the basic properties of
evén and odd numbers. ﬁiatoﬁ'écauy, the s&ﬁﬂy of ever and oélé m;rnbera_
was the source of what we today call the theory of nutnbers. 'E‘Qe many
interesting pxoperties of these numbers were sé:u§ied by the Pythagoreans,

a mystical organizai:i'on in ancient Greece devoted to the study of numbers.
Many of the ideas to he deveiope‘d later in this unit were known by thgse .

- early mathematicians.

Moany uses are made of odd and even numbers today which are not

familiar to many people. For example, odd and even numbers are used

in numbering highwiys in the United States in such a way that notth-south

roads are named with cdd numbers and east-west roads with even numbers.
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numbers. We have U.5. 40 fmiﬁ east to west across the United States,
1-94 from Detz;oit to Chicago aﬁd 1-75 north-south. Most everyone is
iami!i#r With the numb;rizag of hbuae’s. the odd numbers o;; one side of
the strest, the even oh the o&her.‘ A fact many may not know is that
airlire comp.anies use even and odd number; to hénp prevent head-on
‘craahes between airplanes. This is deas by having the flights in baf;e direc-
tion at odd numbered thousands (e;g. » 17,000) of feet of altitude an;l the
flight in the other at even numbered thousands of feet of altitude. Such
ifacta; zs these ave interesting and should be good motivating devices for
developing interest of students in roathematics. We now éumn to the devel-
Opmén;nt of some mat%teﬁafsical'cbmcepi:s aasm&.iaﬁed with the sets of even
anﬁ odd 'numbe;'a. Some gunestions in this az:éa 3@&1@ themselves very ng
to discovery and creativity. Some such guestions are 2bout sumse and
products of even and odd numbers. We afhalﬁ consider this after general

developments about even.and 0dd numbers themselves.

Even Mambhers

If we weyxe to pose the guestion to someons, "What ié. an even number?"
the answer might range from, “it's cm.mtang“by twos, " to "You can divide
it by two, " to "It ends'in 0,2,4, 6, or 8" Such imprecise or vague notions

will not suffice for our work and we shall attempt to develop moré grecise

ideas. Consider the follow‘ing:
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2x9
2xnl
222
2x3
2 x4

£

it

fe

ey o8 b WO
"

Do you seé a pattern developing here? On ¢lie left we have the even numbers
and on the right other names for these numbérs all showing 2 x (some
whole number). Suppose we continue the dist of 2 x {some whola number):

on the right:

92 = 285
2 = 26

2 = 227

? = 222901

o
L 4

Would we continue to get even numbers on the left? It app'eaz:'s‘ so. Would
we get a1l of the even numbers on the left? The “'definitions” given abqvé
do not suffice to' answer thess guestions in a direct manner and'qée must
formulate é more precééeg workable definition Suppose we d;!ine "even

numbez" in light of the pattern seen above.

Deﬁ'nition 1. An even number i3 any number which is the product of the

number two arnd 2 whole number.

3

This fits the pattern observed befores It also agrees with our imprecise

"definitions” given before. Does it agree with your concept of “even number'?
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Suppose we agree to call this our official definition. It might appear that
the use of two in this definition is rather arbitrary. W.hy couldn't we
have.used 3 or 4 or some other number? Suppose we investigate a
pattérn of products for other nunﬁbem as we did above for 2 and see

what happens,

"
2

éxOZ

30 =20 4xx0 =0

3]l =3 4x1 = bl = 6
32 = 6 4x2 = 6x2 = 12
3%3 =9 4x3 =12 6x3 = 18
3x4 =12 4xt =16 6x4 o 24

Now if we tried to define even numbes in terme of 3 we would run into a
litile difficulty since some produecis of 3 are odd. Suppoe we throw out

the products that aze odd. Thie leaves
3xx0 = 0

32 = 6
3xd = 12.

Thought Exercise

All of the numbers lisied avove are even What would be wrong with
defininig even number in terms of 3 using just these products? Would we

get all even numbers? Staying in the set of whole numbers, how could we

get 3 x (some whole number) = 2? Or 4? Or 8°?




Suppose we consider 4 in the same wavj. You will note that the pt;bducto
of 4 x (any whole numbes) are all even go at leas? we don’'t need to discard anye.

Let's ask the same type of queéti@ns about 4 as we did about 3.

Thought Exe rcise:

Staying in the set of whole numbers W = {0,1,2,...} , can we find
gome number n suchthat 42 n = 2 ? | 6 ? 107 Coneider the“ products
of tfte form 6 x isome whole number) Clouzﬂ 6 be used to definé "even;' |
numbex s-o that we could be assured that our defini&ibn included all whol'a

numbers? What about 2 ? 38 ?

Since it appears that use of 3,4, or 6 in a defimition of even number

will not give us all even nurbers, maykbe we ought to éues‘sion whether 2 does.

coeo N . ' : ) P Tt

Thought Exercise:

!

is. 2 xn aﬁwayé an even mumlizﬁes' whenever n ¢ W (n is an element of
the set of whole numbers)? . Look at Definition 1 to help you answer. Suppose
we aslhk the‘. qﬁ;ééion: if m is an sven number canwe write m = 22n
where n is some whole number? That is, .i's every e§en~number of the form
2xn? 'l,‘.his iz really a question Ayou need _tb answer for yourself in ordar for
oﬁr Deﬁaitiom 1 ‘to be suﬁfi;:iént to cover your vés:évious idea of an "even numbez",

and this will be left to you.

-

From now on, let E represent the set of evennumbers, i e , E =

O4b6...o} v

L )
<
N
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Consider the pattern of pz'oducis of 2 again.

0 s 2x0
2 = 2x%1
4 = 2x2
¢ = 223

Can we generalize this pa&tekn to get' an expression which always represents
an even number? We have teuched on this in 2 previous thought éxe‘i‘cise.
Suppose we let n represent any whole number, i.e., n « W . From the

pattern above and our definition of even number, can we say “2 x n is an even

number®” ? A statement in syrmbols eguivalent to Definition 1 would be

If n ie a2 whole number (n ¢ W) then

2xn is an even numbesr (2 n) ¢ E) .

Before we tuin our attention to the odd numbers, censider ihe following
exercises which will check your understanding of the definition of even

number.

Fxercises:

1. Ia each of the following numbers aﬁ even number--610, 324, 10242
Bow could you show whether each is or is not by usz of Deﬁniti@n 17

2. Again by use of Definition ], can you show that 4% n'.,, where ne W,
is an evén number? What about ¢ xm (me W) ? 3¢ x'_k(k « W) ?

3. Thought Exercize. Can you show that 25 is not an even number by

use of Definition 1?
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0Odd Numbers

Think about the folﬁowing statement. "If we take an even number and add
one (1), we get an 0dd number. " If we look-at some examples, 2+1 = 3,

641 = 7, 24+1 s 25, it appears the statement i3 reasonable

Then suppose we condider the following pattern )

042 = (2x0) 41
241 = (2x1) 21
441 = (2x2)+1
641 = (223)+1 =

2 .
[ ]

i

i
- U W -

it

On the right we bavé each odd anumber and on the left each od&‘ number.

written as an even number plus 1.

Do you notice 2 familiar term in each of these expressions? Ww see

terms suchags 2x0, 2x}, 2x2, 2::3. ear o Remernber we bave

agreed to let 2 x n represent any even number. With this in mind, what

does '(2 x n) +1 repregsent? It obvicusly is an odd number,

Sowecanlet (2xn)4+1 rppreaent any s%.umbe:r which occura in the

middle in our above listing of odd numbers. Then in general

if n is a whole number (n ¢ W) then (2xn) +1 ie an odd number,

Thought Exercise: Using the expression (2 x'n) + 1 and substituting, one

at a time, all whole numbers, will we obtain every odd number? (Remember .
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the conclusion of the other thought exercises,) Try to demonstrate this

by trying some numbers and see if you can arrive at a conclusion,

In trying to answer this exercise, did you feel some uneasiness about
lack of support for your answer ? If you did, this probably'stems from
the fact that the set asked ahout, the set of odd x;zumbers, can never be
completely written out. So by mere listing we could never prove anything
about this set. 'A n;xore precise definition of odd numbers is #robably

in order so we can think more intelligently about these numbers. In

' the same manner as Definition ! of even number, we define an odd

number as follows,

Definition 2. An odd number is any whole number which is one more.

than the product of ‘a whole number and the number two,

Thi. definition tells explicitly what an odd number is but if we are giv‘én.
a 'xfmm'ber.it doesa’t tell us how to determine whether it is odd or not. -
Suppose we consider even numbers éxgai.no 0,2,4,6,.... If wedivide
each of these by 2 we get a remainder of 0, and 2 divides each "exactly',
(Aqtually this is the s:ztme a5 our earlier definition using the inverse
operation.) Thinking in this manner, what is the remainder when we:
divide ea".’ch odd number by 2 ? Suppose we base a definition of odd

nuinber on this idea.
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Definition 3 . An odd number is a whole number which leaves a

remainder of 1 upon division by 2.

This definition is actually stating the same thing as Definition 2 only in
differént words, Do you see a relationship between this definition and
the expression (2 xn) +1 for an odd number ? What would we get if we

d'vided (€ xn)+1 by2 ?

Now.reconsider the previous "Thought Exercise'’, Can we now
answer this question more positively ? Does every odd number leave
a remainder of 1 on division by 2 ? Does (2 xn)+ 1 leave a remainder

of 1 on division by 2 ?

Sums and Products of ©dd and Even NMumbers

Suppose we pose some questions about sums and products,

1, Is the sum of two evea numbers always even, always odd, oz
sémetimes one and sometimes the other?

2, Is the produét of two even nurnbers always eéven, always cdd, or
gormnetimes one and somefimes the other?

3, Is the sum of two odd numbers always even, always odd, or
sometimes one and sometimes the other?

4. Is the product of two cdd numbers ,alwa,vls even, always odd, or'

sometimes one and sometimes the other?
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Let us scek an answer to the first in the following manner,

1.) 040=0 -~ 2+2=4 4+45=8

0+2=2 24+4=6 4+ 610
0O+4=4 246=8 448=12

Apparently the answer is ""Yes''. The key word heve is "apparenily',
We cannot be sure cn the basis of the littie i‘rafox;matiaxi we have accumulated
whether We are coriect or not. We must be careful about basing con-
clusions in number theory {and in fact in 21l matkematics) on inductive
reaéoning (hésifxg the conclugion on a f@w examples), Examples will be
given later where this type of reasoning leads to falsa conclusions, To
be v’éry sure of our conclusion we must make a dedu‘ctive argurnent 28

follow's,

Remember that'we ¢an represent any éven number as 2 x (scme whole
number), In Question 1, we have the sum of two even nvmbers, Suppose
v&ce represent these by 2 x n and 2 zm . (Why should we notuse 2 xn
for both numbers?) Their sum is represented by

{eunr) + {(2xm).

By the distributive law we have

. & x{n+m).

NMow n and m aire whole nurnbers {n ¢ W and m ¢ W) so what can we

say about n +m ? (This is using the closure property with respect to

addition. )
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Thus 2 x (n + m) represeants an even number since it is 2 x (some whole
number), And so (2xnj+{2xm)= 2 x(n+m)=an even number
for any even numbers,2 xn and 2 xin , Thus we can answer the first

Juestion by 'the sum of two even numnbers is always an even number',

Liei's consider the second question and try to provide it deductively,

Again we have two even numbers, 2 and 2n. Their productis (2 x m) x

’,

{2 = n). By the associative principle we have:

Zx[mx(zxnﬂo

Is [ m % (2 = n)] a whole number? Could you prove it? So we have
(2 xm) x (2 x n) =2 x {(scme whole aumber) which is an even number,

Thus the answer to Question 2 i3, ""The product ¢f two aven numbere is an

evan number, '

Y

Exercises: Using deductiive methods, prove the fellowing,

)

1. Answer {and prove) quesiticon numbers 3 and 4 above. ( Remember
an odd number is represented by (2 x n) + ) where ne W)

2, The sum of an even number and an odd nurnber iz odd,

3, The product of an odd number and an even number is even.

4, The product of two odd numbers is odd.

The Sets of Even and Odd Numbers -

Possibly now that we know something more about even and odd numbers,

we should answer two questions that might have bsen brought to mind at




the beginning of this unit. These questions are ;: Are the two sets E
and ' of even and odd numbers, respectively, digjoint, thatis, do they
have any common elements or not? Does their union make up the set of

whole numbers?

The answer tc the secoud of these can be seen very easily ﬁy relying
on our intuitive idcas of even and odd mumnbers, The set of even nﬁmbers
containe zero and every second number thereafter and ﬁ:h; set of odd
numbers contains 1 and every s’ecom} number thereafter. Now think of
combinizlmg these two sets. The odd numbers fill in the '"gaps'’ of the set
of even numbers and vice-versa, Rémembe:fing our general forms of even
and odd numbérs we may argue as follows., E coniains 2n, so it contains
en+2, 2n + 4, 2n + 6, ete, {every second number thereafter), G contains
2a+1, 2n + 3, 2n + 5, atc, Do you see that the gap between 2n +1 and
2n +3 is filled by 2a+ 2? You should if we write 2n + 2 in the following

forms.

Znt+2=(2n+l)+1
Zn+2=02n+3)-1
We see that 2n + 2 18 one more than én + 1 and one less than 2n + 3,

Sc it is precisely the number which fills the ""gap"” betwecen 2n +1 and'

2n + 3,

Do the following exercises to justify to yourself thaft we have indeed

shown that E¥ 0= W .,




Exercises

1. Show that 2a + 4 fills the "'gap' between 2n - 3 and 2n + 5,
2. Show that 2n + 7 f{ills the "'gap" between 2n + 6 and 2n + 8.
3. What numbers fill the following gaps ? (Justify your answer. )

Between 2n + 9 and 2n + 1l

Between 2n + 16 and 2n +18.

Between 2n + 101 and 2n +103.

The answer to the first question as to whether the sets are disjoint
can be answerad by a type of argument common in mathematics. In this
type of argument, commonly called the indirect method of proof, we assume
the opposite of what it is we wish to prove and see where it leads us. I
this assumption leads to soniething false or contradictory, then we know
thag the assumption is not true. If the assumption is not true, then its
opp’ositg must be true and this @pposite is precisely what we wished to
prove at the beginning. We now proceed with the proof that the sets E
and O are disjoint, We b'egixi by assuming thaf they are not, (in symbols
E/)O# 9 ). This means that these sets must have at least one common
element. This is to say that there is some number that is hoth even and
odd. This may appear an impossibie q;:currence, but remember that we
wish to prove that this cannot hold and that the opposite statement‘holds,
namely that there is no number which is both even add odd. Now we have
agssumed that we have a number which is an element of both the two sets
E and O. That this number is in E means it is of the form 2 xm, for

gsome me W . That this number is also in O means that it is of the form

(2xn)+1 for some ne¢ W. Thus 2xm and (2 xn)+1 represent the
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same number and we can say
'M'me = (2 xn).-‘e-l.
We now need to anply some algebra and get
(2xm)-(2xn)=1.
or by using the distributive 'principle,
2x{m-n)=1.

Let's .s'ee what this says. If m is g;reaiei than n then m - n 'ii 'a
whole number. Thea 2 x {m -n) is an even numbér, So the ;quatioh
above says 1 is an even number, an absurd staéenient. If n=m, ther;
mensz=0 60 1=22x0=0, ‘again an absurd statement. If n is gre'atelx‘-
than m,,‘_ then m - n is 2 negative number go 2((m -n) 'ia negati\;e, Tl;;s
the eqﬁation says 1 is negative, So no matter what the relation bémeéﬁ |

m and n, the assumption we started with, namely that our original aumber

is'in both E and ‘0, cannot bz, Thus there cdhnat be any aumber that is

both even and odd.

Thus we see that
E{JOo=w

and E n O =$ (E and O are disjoint).

We have had to reach out of our set W of whole numbers into the
negative integers in the above arguments, though at the beginning it was
stated that our work would be all in W, The theory of numbers actually

includes study of all thes integerso positive, negatiwz.?D and zero, so we
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are not incorract in using them; but we wiil not do €9 again.

2.2 Factors, Divisors and Multiples

In tﬂe last section we z’zoted'and made use of the fact that theve is
something which all even numbers have in common, Every even number
can be written as 2 x (some whole number) or 2 x n where ne W, We
can indicate this by saying "2 is a factor of every even number, "' Equi\_ralently,
we can say, ''2 is a divisor of 'e.ver'y even numbez. " We should try to get
precise definitions of the terms ‘factor" and “divigor,'" To do this, we

ghall use the idea of "exact divisibility, "

If we were to-ask a child in the middle elementary school what it means
to say one number divides another exacily ba would pr obaﬁly know but
maight not be . able to verhalize it, For example, we know
2 divides 4 exactly,
8 divides 32 exacily,
5 divides 75 exactly,

Algo -
2 doee not divide 17 exécﬂvo
8 does not divide 9 exacily,
5 does not divide 25 exacily,

But now we should agk: awhat criteria do we use ¢to determine exact

divisibility? Probably we divide and check the remainder., More

precisely we could make a definition,




Definition 4. Given m and n are whole numbers, we say m

divides n exactly if, when n is dividéd by m, the rémainder is zZero,

(We should of course exclude m = 0 since we can never divide by zero. )

Anothier definition of dividing exactly which may be less workable at
the moment but applicable later i3 possible, It is based on the idea
that if m divides n exactly then there is a whole number which is

the quotient, For example

2 divides 8 exactly because 8 = 2 x 4, (4 is the quotient)

5.divides 75 cxactly because 75 = 5 x 15, (15 is the quotient)

In general, then, we have a definition following this pattern.
!

Definition 5. m divides n exactly if and oaly if there is a whole

number k guch that namx k., (k iz the quotient)

Now we can define factor and divisor,

Definttion 6, [f ma and n are whole numbers, then m is a whole

number factor {divisor) of n if and only if m divides n exactly.

We must be careful to specify the kind of factors of which we are
speaking. In this unit we shall be concerned with only whole number
factors, It should not be thought that this ig the only type., For example,

though 2 and 1 are factors of 2 so also are 1/2 and 4 since 1/2x4=2

and 2iso are -3/8 and -}8/3 since -3/8 x -16/3 = 2 and there are
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many more such factors. The distinction between these examples occurs
when we note that the first two are whole number factors and the last two
pairs of factors are rational {or fractional) factors. So it ie necessary to
specify the kind of factors we are speaking of in a particular case and

this will be done throughout the unit,

A concept closely related to factors and divisors is that of multiples,

Consider the even numbers.

0=2=x0
2=2z=x1
4=2x2
6=2x%3
8=2xn4

=2 xXn

Examining this pattern, we note that we can say, 12 ig a factor of
every even number.' Eguivalently, we can say "every even nurnber is a

multiple of 2,'' Notice that to get the multiples of 2 we can count by twos,

Suppose we investigate multiples of 3 based on our intuitive notions

of multiple.

Thought Exexrcise

List the first 6 multiples of 3 in increasing order. Is this like

veounting by threes"? Did you list zero? Is zeroa multiple of 3?

5 .
§ Notice above that we said evéry even number is a multiple of 2 and
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we consider zero as an even number. Following this reasoning, zero is
2 multiple of 2. Is it poasible zero is also a multiple of 3? Perhaps we
should have a more precize definition of multiple than our intuitive notion

affords to enable us to answer such questions.

We have seen that in the case of the rumber 2 there ig a close relation-
ship between factor and multiple. Suppose we investigate for such a
relationship for 3 and 4, The information is arranged in a table for

convenieace.

T

n Numbers of which n is a factor Reason

3 -0 0=3x0
3 0=3x1
6 6=3x2
9 9=

"3 % 3

s 8 G
a0

4 0 0C=4x0
4 4=4xl
8 8=4x2
12 12=4x3

Consider the numbers in the second column, Are the first four
numbers muitiples of 3? Are the second four numbers multiples of 4?
Then the -elationship between factor and multiple appears to hold for

numbers other than two, We utilize this in the following definition.
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Definition 7. If m and n are whole numbers and m is a factor

of n, then n is a multiple of m,

An Equivalent definition of multipie related to Definition 5 of factor is

as follows.

Definition 8. If m and n are whole numbers, n is a multiple of m

if and only if n =k xm for some whole number k.

Working the following exerciese should help clarify the above ideas

and also point to later developments,

Exerciees:

0

1. Make a list of the first 4 elements of the sets of multiples 'of each
of 5,6, and 7. Show each in the form of the third column of the table
above, For example, 10=5:x2, 18 = 6 x 3, etc, Remember that this

shows that 5,6, or 7 are factors of these numbers and that these numbers

ara multiples of 5, 6, or-'h

2. Do you remember the generalization that was made of the pattern

which was seen for even numbers? We had

0=2x0
2=2x1
4=2x2
6=2x3

This wae generalized to the fact that every even number can be written
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ag 2 xn, What pattern do you see for 3,4,5,6, and V? Can you write
a géneral element of the sets of multiples of these numbers?

3. Of what whole number is 6 a muliiple? Is there more than one?
Show this, What numbers are factors of 67 Show this, Of what whole
number is 12 a mulﬁple? Is there more than one? Show this. What
are the factors of 12?

4, Can you find a whole number which is a multiple of 2,5, émd 7?
Show how you do it. What are the factors of this number? Make sure
?ou have them all,

5, Is zerc a factor of any whole number? A multiple? Is any whole
number a factor of zero? A multiple?

6. Complete the following table,

n factor of n Reason

1 1 Iz 121

2 1,2 1x2d =2

3 1,3 ix3=3

4 1,4 lx 4= 4
2 2xid=4

5 o

5 o

; o

8

9

10

0




What whole number appears to be a factor of every other whole number?

Can yoﬁ generalize this for any whole aumber n ?

7. We can represent the set of multiples of 2 number mé.ny ways,

For example consider the set of multiples of 3. We can write
A= {0,3, 6,9 12... .
We might also write the set of multipies of three by the following.

‘B = {3n|n is a whole number}
{ the | is read "such that'} ¥
C={3n|ne W}

D = set of all whole nurnber multiples of 3.

Verify to your own satisfaction that A = B= C= D ; thatis, that each

of these sets contain exactly the same elements,

2.3 Pri:ﬂne and Com:?osite Numbers

- -The concept of a primae number is one of the fundamental ideas of

numnber theory. Soime of the most beautifel and profound theorems and
results in this field of mathernatics are about prime numbers, Historically,
the study of prime nun;bers has been very fruitful to the field of number
theory, Tools have been developed in dealing with pzlzoblems abeut primes

which have bzen extremely valuable in other areas., The Greek Pythagoreans

attributed magical powers to primes and much mysticism to their study,
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Today the mysteries and fascinations of primne numbers still intrigue
and occupy mathematicians, Some problems dealing with primes which
when stated ave simple encugh to be understood by elementary students

and yet they have . defied solution for many centuries,

Before we get into precise deveiopments about primes it might be
instructive to see how these concepis can be intrcduced to elementary
school cﬁilc}ren, The ideas of what prime mumbers are can be intro@uced
cdncretely and easily to elementary school children by the use of sets
of blocks, If they are given sete of blecks containing different numbers
of blocks, say 4, 5, 6, 7, and 8, and they are asked to take each set and
divide up the blocks in that set into egual piles, they can be lead toa
basic uﬁders@nding of éxﬁme ’mzmber'é'as well as numbers which are
not prime. This can be accomplished 25 follows: Suppose a child is ’
given a set of 4 blocks, If he is askedl to divide this set into a number
of piles {sets) each containing the same number of ;mocks, he might
divide it into 2 piles {sets) of 2 blocks each, If another child is given
the same task, he may divide the set izﬁi:o 4 zets each with one block,

In & clagsroom there will surely be students coming up Wiﬁh each
solution, This is the activity for which we are looking. { A precocious
student might suggest thé,t one pile of 4 ié an answer, though by the way
the tagk is described this would not be anticipated,) Suppose we now "
give the students another set of blocks containing 6 blocks and again

agk them to divide it into equal seta. Some may get three sets of 2

each, some two sets of 3 each and some six sets of 1 each,
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Suppose we try a set of 8 blocks, Here we could get 2 sets of 4 each,

4 sets of 2 each and 8 sets of 1 each.
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Such results might lead to a conjecture from the students that if we take
any set of blocks there are many ways that we can divide it into equal
s2ts of bl@;kso It i3 not necessary that t'ﬁey mavke such guesses though
ithey should be asked questions about any patterns they miéht see, Now
let them try a set of five blocks, After tr‘ial and error, théy will come
up with only one w’aw{r of getting sets of an equal number of blocks. (They
should bé‘gncouraged'ﬁo try '.t.‘or m.ére than one way since this is the
crucual goint of the experiment. ) (Again some precocious student may

suggest one pile of five blocks and say that there really is two ways
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though when we get into prime numbers and factors we will see that
these are the same concept.) Now the students should be allowed to try
sets of blocks containing different numbers up to say 20, A table should

be kept of each of the different arrangements for each number as they

are found, Afier several numbers are tried then we can make some

kind of definition of prime number »in velation to the number of ways we
can divide it into equal sets. It might taks the form of ''a number is prime
if we can divide it up into equal sets in only one way (excluding tﬁe case

of only one set of all the blocks)’. Afier these ideas have been developed
then one could go into a more precise definition of prime such as we

will do in this section,

A variation of the é.bove experimental approach to primes would be
to ask the students to arrange the sets of blocks into a rectangular form
of so many rows with an equal number in each row, This is still dividing
the sets into a number of equal sets, but it may be wnore convincing and

conczete to the students to see the equal sets arranged neatly in rows,

For example, for 8 we might have

t 1

I T 224 1xs OO0/ @D

8 x1l

O Ul

L] [] e=xe
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You will notice that the one sat of 3 blocks is sure to mentioned here as

one row of 8 blocks so the defiaition of prime would have to allow two

ways of arranging the blocks into €qual rows, There is no inconsistency
between these two approaéhes to primes but students might be confused
if both methods wére used, We now proceed with more precige inafhe-
matical developments abdut.prime' nurnbers. We shall Eegin our study
of these based on what we halve learned pre{riouély' about factors, _di’\;ié'ors

and multiples. ~

Consider the table which you comipleted in Exercise 6 of the previous .
section. [t appears that every whole number except one (1) has at least
2 distinct factors. Your answer to the question in this exercise should

support this. For any whole pumber n,
n=nxl,

Hence by our definition of factor, n and 1 are both factors of n.
Notice also that there are some numbers which have more than two
factors, for example 4, 6, 8, 9, 10, @Remember the arrangements of

blocks?) These facts will lead to our definition of prime numbers,

Definition 9. A prix;ne number is any whole number which has

exactly two distinct factors,

on

Thus frem our list in Exercise 6 above, the primes less than 11 are

2, 3, 5, and 7,
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Fc;r a moment, we will consider the whole numbers which are nét
prime,. These we break up into two gets: those which do not have t\i'ro '
distinct number factors, and those vwith' raore th:'an“two whole nun;ber
factors. Can you decide what numbers should be in the first set? It
is obviou's that I mus;t be .iﬁ ,th‘? first set if you ask ?ourself what two
whole numbers can be multiplied together to get '1; Only 1 xl= 1 so
1 does not have two distinct whole mmﬁber 'faétors,,' Are there any d'ii.her
nuarnbers in the firsvt set'? Remember that we said that any wﬁdle num'ber,
n , other than cne has at least two factors, landn. So 1 is the 'oxily
number in the first set. In what get shall 'v-;e place zero? ¥ vou véompleted
the.table in Exercise 6, Saction 2, 2, cofmcﬂy, ‘y'on should see fhel

Y

answer. Con.ider the following,

0=0x0
0=1x0
0=2x0
0=3%0
0=4x0

| I A

nx 0 for any whole number .

Hence every whole number i a factor of zero, - How many such factors
are there? Could you-eveé count thern all? We indicate this by .sa;'ing
there isan infinite number (this meéras more than we could couat), So
we might say that zero is in ﬂ;e. last set but it will cause confusion to -
i'nclucie it in this set so we 'gen'e‘x‘a'xlly pﬁt it in 2 set by itself, What we

are saying then is that all whole numbers other than 0, }, and the primes

are in the second set. This set of numbers is called the set of composite
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numbers and we will dencte the set by C ., A definition is in order,

Definition 10, A composite number is any whole number which has.

more than two distinct whole number factore., (This of course excludes

an infinite number of whole number factors. )
Another way of characterising these numbers is by:

Definition 11, A compesite nwumber is any whole number other than

0 and 1 which is not prime,

We now have another decomposition of the set of whole numbers into

sets. If we denote the set of primes by P then we-have -
w=risCcu1}u {0} .

Actually thése sets are also digjeint because a whole number has either
l, 2, more than 2 factors, or anm infinite number of factozrs and this
piaces it in one and o{alv one of the above sets, ({'E’;emember we said any
.-;ié'yhole nuimher greater than 1 has at leé.st 2 factors,) This is "an

application of a very important principle of mathematics called the

Fundamental Theorem of Arithmetic, This will be dizcussed in Sec, 2.5,

A question which first arises in, "'"How can we tell whether a number

is prime or composite?'' The most obvions way to tell is to try to find

factors of it, This becomes increasingly difficuit, if not impossible,

as numbere increase in size, For instance, it is relatively easy to
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determine primes and comwmposites legs than 100, [t is more difficult to
determine those between 100 and 1000 and almost imposgsible without the
use of 2 computor for very large numbers. An ingenidus device for
determining primes was invented by Eratosthenss {¢. 230 B. €. ). This
device is called a sieve and is constructed as follows, We begin by

writing down the whole numbers in order,

1 @O X B X@HE ¥ i
AD 1D 14 ¥ 1 ED 18 ) 28
2 2@Hae 25 26 26 28ED 306

Ge . . .

We note ihe first prime, Z,}. @{réle it and crbas out every second number
thereafter. (Remember the réaatmnship between facters and counting by
a certain number?) We note the first number not crossed out, 3, circle
it and cross out every third number thereafter, (Some may have already been
crossed out. ) Fivelis the next numbar not crossed ocui, we cirele it
and cross out every {ifth number theveafter. And so on. Note that
every circled number is a prime and each time the next prime is the
next number which has not been crossed cut. Can you see why the circled
numbers are all the primes? FEach crossed out number has factors
other than itself and 1 and each circled number does not. This sieve
of course becomes very unwieldy for large numbers, Other ways of

finding prirnes have been sought after. Men have searched for centuries

to find formulas for determining prime numbers. The best that have
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been obtained are formulas which approximate or indicate the approximate
number of primes less than a certain number. What is meant by this is
best explained by some examples., Consgider 10. The primes less that 10
are 2, 3, 5, and 7. They are four in number. The primes less than 20
are 2, 3, 5, 7, 11, 13, 17, and 19, eight in number. Less than 30 we have
those less than 20 plus 23 aad 29, ten in number and so on, Less than

100 there are 25 prime rumbers. As we take successively larger numbers
there appears to be no connection between the size of the number and the
number of primes less than it exceopt the larger the number the more primes
less than it. The formnula mentioned above has been known since 1800 and
gives a rough approximation to the number of primes less thah any given
number. We will not discuss this formula here a# it involves ideas beyond
the scope of our work. It suffices to know that such exists, No formula

is known which gives exactly the number of primes less than a given number,
’ 4

Another question which arises ig "How ai'xany primee are there?'' We
seem to get an inciic:atéun to the answer by looking at the number of primes
in intervals between numbers, E‘o?: example, between ! and 100 there are
25 prime numbers including 2, 3, 5, 7, 11, 13, 17, 19and eo on. Between
100 and 200 there are 2l prime numbers and between 200 and 300 there
are 16, The table below gives the number of primes in intervals of 100
numbers up to 1000, If we continued this table on cut to 100, 000 it would
be very evident that the numbers in each 100 number interval is getting

less,
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Numbers from 1 100 200 300 400 500 600 700 800 900
to 100 200 300 400 500 600 700 800 900 1000
Number of Primes
in the .
Interval 25 21 16 16 17 14 16 14 15 14

This '"thinning out' m'igh"é; lead us to c:onje@mré that there is a cerizin
number of primes and that a.ff,‘t@r 2 ceriain point we would find no more
primes. As has been pointed out before, conjecture based on a few
specific cases must be avoided in mathematics becauvse this rnany times
leads to false conclusions, This is a very good exami;le of thie fact,

for it was proved by Euclid'many ceaturies ago that the number of primes
is infinite. This is to say no matter how many primes are found, th;are
will always be more. The pr’aof of this theorem: is very simple and can

be found in the appmn’%iix for any who wish to follow it through. Many

large primes have been found and tables of primes have been constructed
3217 .
=1, &
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number which, when writien in usual forms, contains 969 digits,

up to 10,000, 000, In 196], the largest verified prime was 2

The following exerciss which may askfsomae of the many interesting
_ which may I
questions be raised about the relationship between the sets E and O

of even and odd numbers and the sets P and C of prime and composite

numbers.

Thought Exercise; What are the relationships between the set E

and the set P ? Are there any even numbers that are prime, i. e., whatis




is
ENPR ? What about ENC, 0N C, and 0l P 9

Don’t be concerned if you can't answer exactly; just think about these

and try to indicate what each set would be.

2.4 Yactorization

We have seen that all whole numbers greater than ) have two or more
distinct factors and we have indicated this by showing these numbers as

a product of two whole numbears, For example,

2=2=x1
4 =22x2=4xl
9@3:{329}:1“

Thisg process is very imporiant in mathematics and has been given

a name, Whenever we show 3 number as the product of two or more

factors, we say we have "factored’ the namber, The process we call

"factoring'’, The representaiion of 2 number ag the product of two or

meore factors we call a ‘'factorization’ of the number. For example,

if we "factor'" 8, we get ' '

8=2x4.

8 has been 'factored" into 2 x 4 which is 2 ''factorization" of 8. Notice

we say ‘''a' factorization of 8. Are there other factorizations of 87 Of

course, 8 =8 xl. Also, 8=2x2 x2, $o there are at least three

factorizations of 8, Are there more? What shall we say about 8 =1 x 8
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and 8 =4 x2x2? Itis conventional ic call 8 x1 and 1 x8 the same
factorization of 8. Alsc 4x 2 and 2 x 4 are the sawme factorization of
8. (What principle of arithmetic ig being applied here?) Shall we now
say that 8 has only three factorizations: 4x2, 8 x1 and2x2x27?
What about (1/2) x {16), (3/4) x(32/3), and {-2) x (-4)? Are these not
factorizations of 8? We must be careful to speciiy what set of numbers
we are using as factors or what set of numbers we are factoring over,

We call this set ihe ''domain of factorization'. Thus if we ask, "What

are the factorizations of 8 if the domain of factorization is the whole

numbers 7' then we can answer the above questions definitely. The

only factorizations in this casc are 4 x 2, 8 x1, and 2x2x2.

The following exercises will help acquaint you with these terms,

Exercises: (The dornain of factorization ie the set of whole numbers).

1. Find all factorizations of 16, What are the factors of 167

2, Find all ﬁagmrir@aﬁmns of 4. What ara the factors of 4?

3, Do you see a2 relationship between the factorizations of 4 and 16?
what is it?

4. Consider the following:

8§=8x1, 8=8x1x) 8=8xixlxl=x...

Does this suggest some further modification or clarification of the term

"factoring'?
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2.5 Prime Factorization

Consgider the following factorizations of composite numbers 1 to 20,

4d=dxnd=1xd
6=2=2x3=1xb

10=2x5=1x10

=2x2x3=2x26=3x4=1xl2
4=2x27=1x)4

15=3%x5=1x15
16=2x%x2x2xn2=2xB=4xd=1x1lb

18=2x3x3=2x9=
20=2 w2 x5 =2xl0= 4 x

= 1 R 18
2 1 20

&
&
O

What do you notice aboui the factors in the fivst factorization in each
cage? Are these factors prime or composite? It appsars that sach

composite nurnber kas a factorization in which all factors are prime.
We wish to single this factorization ou?a‘ to be vwsed in further develop-

ments 50 we call this the prime factorization of 2 number, Notice we

can say the prime factorization because we have agread to call factor-

izations such as 2 x5and 5 x &, 24 x3ixJ3and 3 x 2 x 3 the same
factorizations of 10 and 18 respectively. Also in saying the prime

factorization we are applying a very important theorem which is basic

to mnany branches of mathematics. This is the
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Fundamental Theorem of Arithmetic (also called the Unique
Factorization Theorem): Any composite whole nuraber other than 0
and 1 can be factored into prirnes in one and unly one way, except
possibly for the order in which the factors occur,

This means that if we factor a whole number n by axbx ¢ xd where
these are primes, then any other factorization of n into primes must
have the same prime factors, a, b, ¢, and d, possibly in soma cther
order. It mnay appear that thiz theorem is a very simple result and is
oﬁviousﬂ It is algo very important as there are some mathematical
systems in which unigue prime factorization doss not hold, though we
do not encounter any in the elementary school program. The preof

of this theovem is relatively siznple but it would not suit our purposes
to present it here, For the interested student & preoof may be found

in any theory of numbers text,

Students often encounter difficulty in finding the prime factorization
of nuinbers, A device helpful in thig is called a factor tree and is
illustrated by steps as follows, Suppose we wish to factor 84, We
might notice that 6 will divide 84. 8o we factor 84 using © as one

factor.

84

6x14

Then we find factors of 6 and 14,




.V
Notize that we have continued until we have all prime numbers as factors.
So B4+ 2x3x2x1,

We coulci also have proceeded by noticing first that 4 is 2 factor.
The factor tree thus obtained is
84
4 x 21
AN

2x2 3IxT
So 84=2x22 x3xT
Also 84
12
{3
}
3

b

H

b
3 79\’-\

a2
#
N

%
So 84=T=x3x2xé

Notice that no matter which tree we use, we get the same factorization-
into primes except for order, This is an evideace of the Fundamental

Theorem of Arithmetic,

The factor tree is a very concrete and graphic method for illustrating
to students the meaning of factorization. Sometimes this method of
factoring is not easy to initiate, especially with large numbers. There
is a more systematic way of factoring a number., This is illustrated by

the following example.
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Again let us factor 84. We bagin with the smallest prime, 2, and

see whether or not it ig a factor of 84. Wae zee that it is and write
84 = 2 x 42,

We now try to factor 42 and we again try the smallest prime, 2. It is

a factor so we write
84 =2 x2 x 21,

i we try 2 again we scee it is not a factor of 21 so we try the next prime,

3, and we get
842 x2x3x?.

At this stage all the {acicrs are prime so we are done, (Note again the

illustration of the Fundammental Theorem, )

As another illustration, .appose we factor 030, Again we fry
consecutive primes 2,3, 5,7, etc,. Remember each muay be 2 facior

more than once,

2 % 315
2 x 3 %105
223 x3 x 35

630

i

bl

5

i

ex3x2a5x7,

Actually, with this method we are trying each consecative prime as a

divisor of the compoaite number. For this reason we may call it the
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consecutive prime method. We can carry out this process then as a

continued division by consecutive primes.

5735 :
37105
3 J 315

2 7630 Sp 630 =2x3x3x5x7.

In illustrating this to students, one should probably not go {rom the
original discussion to the final algorithm formm too quickly, The
student shouid unﬁ@rﬁwmﬁ the reasons why the method works and the
reagon for each step befors he makes a mechanical operation {the "'

repeated division algorithm) of it.

We will apply prime factorization throughout the remainder of this
booklet and the reader should be familiar with it before proceeding.

The following exercises will help in this respect,

Exerciges: (The domain of factoring is the set of whole numnbers. )

1, Find the prime factorization of the foliowing numbers by two metheds,

a, 32 ;
b, 18
c. 3% 4
d, 16

e. 36

£, 272

g. 45

h. 25

i, 700

jo 15
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b=
Exponential notation, We sometimes use a shorthand notation in
factoring into primes, To indicate the number of titmes any prime is
a factor in the factorization, we use an exponent. Consider the following,
4523 x3x5
This can be written asg
2 .
45 =3 x5

The 2 is called an exponent and indicates the numbei of factors of 3

i o i i e
" = 1

in the factorization. The 2 which is the factor is called the base

ki

Note: You must be precige in speaking of this. A comon error by
students is to say the exponent indicates the number of times you
multiply 3 by itself., This is very confusing and incorrect as the follow-

ing example shows,

Dees 355 33 x3x3x3x3

5
or 37 23 %33 xIxnd 7

In the first case, we have multiplied by 3 by itself five times and in the
second case 3 is a factor five timmes. 8o we must be precise in our
terminoleogy and say the exponent indicates the number of times the bose

is used as a factor, If 2 namber is a factor just once, then we use | as

the exponent., The writing of the 1 in this case is optional and the bass

. . Z 1 1 é
can be written without any exponent, Thus 3 x5 7 =3 =x5x7.




2, Write each of the prime factorizations in Exercise 1 using the
exponential notation,

3, What relationship do you see between the prime factorizations

of 32 and 167 18 and 357? 25 and 757

4. Using each of the two methods given in this section find the
prime factorization of 256. Of 425. Of 10,422, {indicate these in

exponential notation),

Unit 3. GREATEST COMMON
DIVISOR AND LEAST COMMON MULTIPLE

3.1 Iintroduction

We are all familiar with the processes invelved in the following

axerciges,

3,2 ? . 10 19
g ' 12 24 24 24
i5 _ 1
7 5

We are also familiar with the difficulties encountered by many students
in developing and retaining skill in carrying out these processes, The
modern approach to teaching mathematics emphasizes understanding to

show how the theory of numbers contributes to this understanding in the
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above processes. First, we develop further some ideas which have
previously been touched on and which will be useful in the following
sections. These ideas deal with the divisibility of a whole number by

a counting number,

3.2 The "Divides'' Relation

In Definition 2, Section 2.2, we defined a relation involving division
which can exist between two whole numbers, We repeat the difinition
here for easy reference,

% me W and ne Wi{m £ 0), then m divides n exactly if and
only if there is a whole number k such that n = m x K,

We will drop the word "exactly'’ as it is mathematically correct to say
vpn divides n', MHereafter we will use a symbol to represent '"divides'®.

Th

ybe

*
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he vortical mark | . Thus we will replace m "divides'' n by

m | n. Our definition is then

If me¢ Wim¢0)and ne W, then m| n if and only if there

is ke W such that n=m & k.

The properties of this relation are interesting and are easily understood
when presented in a developmental manner, Suppose we first do some

investigation with particular nwmbers,

The subscript, a device used contirually in mathematics writing, is

used here, What the subscript means is that the same letter with

different subscripts represents different numbers. For example, kl




and kz are used to represent values of k in the definition above which
arise in different situations. kl might arigse in the first example and kz
in the second. The subscript is merely a tag to help us remember that
kl and kz are values of k which have come about in two different
instances. We are not saying by the use of the subscript that these two
values of k could not be the same, i.e., we are not gsaving kl # k2 .

These can be equal. We are merely distinguishing between them for the

discussion.

We know that 4] 8 since 8 = 4 x 2, (kl = 2).

Also 8!24 gince 24 = 8 x 3, {kz, = 3),
Does the relationship hold between 24 and 4 ? VYes, because
24 = 4 x6,{k, = 6),

Do you notice anything about the diffsrence values of k ? Suppose we

try another set of numbers, We know that

7[28 since 28 = 7 x 4,(k = 4)

and 28|280 since 280 = 28 x 10, sz = 10).
Now, does 7[280? VYes, because
280 = 7 x 40, (I, = 40).

Notice the k's again. Suppose we generalize this into a statement (called

o
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a conjecture) and see if we can prove it.

ifa, b, and ¢ are whole numbers and alb and bjc, thenafc .

Let's analyze the above examples to see if we can discover a pattern

which will lead to a proof of this statement for all whole numbers.
We say 7/28 (since 28 =7 x 4. Analogously, can we say

alb means b=axk , where kl is some whole number ?

1
Remember alb means there is a whole number k such that b= a x k.

We use kl to eliminate confusion with other values of k which follow.

Now we also said 28]280 since 280 =28 x10 . Let's carry the

abalogy out with b and c.

bjc means c=hbxk

Hopefully we can get

2
Now we have the two equations

1 braxk and 2. crbxk,.
corresponding to 3. 28 =7 x ¢ and 4. 280 = 28 x10.

¢ =axk, where k is some whole nurmber

because from this we get ajc . MNotice that Equation 4 may be written

280 = (7 x 4) x 10. Similarly, may we write

c (axkl))xkz?




Essentially, we are substifuting a x kﬁ. in place of b in equation 2 above
which we may do since they name the same number. Now by the associative

principle, we have

czfax(klxkzi)
and by closure,

kl. x kz is a whole number, let's call it k; that is let k = kl x kz
Thus we have

c=axk

where k is a whole number, {(k# k] % !‘«:Zi)c Do you see the analogy to the
above examples for the k's?) Thus aj: e, 80 our conjecture has proved to

be correct. {(We may now call thic a theorem. )

Let's try our hand at formulating another conjecture and proving it by

considering numerical examples., Consider 4, 8, and 20.
We know
4/8 since 8 = 4 x 2, (kl = 2) and
4{20 since 20 = 4 x5, (kz = 5) .

Suppose we see if 4 divides the sum of these two numbersa, that is, does

41(20 ¢ 8).
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? 20 + 8 = 28

and yes 28 =4 x7.

Is this mere chance? Or is there a reason? Let's see if we can discover

a reason for this.

Now 28 =20 +8 ={4 x2) + {4 x5)

What principle of arithmetic can we use tc show that 4 divides the

right side of this equation, that is, to show that

(4x2)+ {4x5)=4xk

for some whole number k ?

The distributive principle tells us that

(4 22)+{(4x5)=4x{2+5),.

Hance we have

28 =20+4+8=(4n2)+{4x5)=24x{2+5)=24xT1T, or28ﬁ4xk3

where k3 =7 .
Thus 4[28

(Note the relationship between the values of k: 2, 5§ and 7.}

Consider another example, 3, 27 and 18,
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3{27 since 27 = 3 =x 9

3/18 since 18 =3 x 6

Does 3 divide the sum of 18 and 27? 18 + 27 = 45, and yesit does, Let's

see why.

4527 +18=(3=x9)+ (3 x6)=3x(9+8) =3 x15

Hence 3[45 since 45 = 3 x 15,

i.2t's formulate a conjecture based on what we have observed above. We
have had in each cage one number which divides each of two other numbers.

We have seen then that the first numaber divides the sum of the other two.
Let's write this in symbols,
If a[b and ajc then af(b + c).

Following the pattern observed above, let's atternpt a general proof.

i

We have alb and ale.

From this, we have by one definition of what divides means,

~b-i=iaxkl and c::axkz

Now b+cz(axkl)%(ax1<z§)o

Using the distributive principle

‘l,f’: l{z» >

l)fﬁ-‘.:m(a:zgkl})-“r(axkz):fia.x:(kR




Thus b4+c=ax {kl 4 kz)) » axk, where ke W and k = k, 4 kz .

Hence a|(b + c) and the conjecture is proved,
These examples illustrate the value of number theory as a vshicle for
teaching ideas of proof to children. The numbers dealt with are the
simplest ones and no complicated ideas of logic are involved. Also, the
proofs themselves are very easily arrived at by searching for patterns,
The following exercices will give you some practice in constructing such

proofs,

Exercises: Following this procedure of building paiterns from specific

numbers prove the following conjectures,
l. If ajb then af[(bx c) where c is any whole numher,
2. If a|{b+c)and alhb, then alc.
3. If ajband alc, then a{{b - ¢), {Toc keep in the set of whole

numbers, assume that b is greater than c.)

Division A}gorithm

All students of arithmetic become acquainted with 2 much more general
idea of division than the above presented one, Theve ave relatively few
“divisions' which "come out exactly" or which leave zero remainders
(such as the above digscussion centers on). Most divisions as experience
shows, leave a remainder, We shall now consider a general principle of
divigion which includes, as = special case, 'exact division'. Without
this general prineiple, division, or the process we use to carry it out,
would be impossible. To lead up to this general principle, lot us again

consider specific numbers.




We know that given two numbers, szay 8 and 28, we can carry out a
process called divigion on these numbors, e. g, 28+ 8. We are also
familiar with the method used. We first seek a multiple of 8 which is
less than 28.

3
8) 28

28> 3x8
428 - {3 x8)

Note that this says that 28 = (3 x8) + 4 Do you sze a similarity to the

way we '"check! division problems? The answer we obtain has been called

by many names, the most prevalent today being "qaotient'. If the division

is not exact, then we have a number Yieft over' which we call the "remainder'’,
Probably everyons would agree that, no matter what two numbers had been
chosen, such statements as those above could be made and that the cperations
could have been carrvied out. [t would be a sad state of affairs if this were

not the case, Very few people, though, kaow the justification for these
statements and this cperatiocn. This justitication is given by the following

general principle, now stated,

The Divigion Algorithen: For any given whole numbers a and b, with

b # 0, there are unique whole numbers q and r such that a = (qxb) 4 r
and r is less than b .
Sorue illustrations of this might make the meaning of it clear, Consider

42 and 9. We can say
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44 = (4 % 9) + 6

alco, 9 = (0 % 42) + 9

so we need nct worry about which number we write as a and which as b
to write it in the form of 2 = (q x b) + r. Consider two more numbers, say

20 and 225. We can write

225 = {1l » 20) + &

er 25 = (0 x 225) + 25

Mow let's analyze the statement of the Division Algorithm referring to

a specific example given previously. We have two whole numbers a and b,
b# 0 (Why?), just as we bad 42 and 9 before. The Algoritbra says that
there are then two whole numbers, ¢ and r ( 4 and 6) which are always

the same for the given a ahd b, such that q is the quotientand r is

the remainder when we divide a by b. Thus the Algorithm justifies the
whole procegs of division and we are assured that, given any two whole num-
bers, we can divide one by the other (except by zero) and get an answer
which will be the same for thoge two numbers every time we .do this

divigion.

The statement was made previously that the gezmral Division Algorithm
contained "exact division" as a special case. This is illustrated by

letiing r = 0. Then we have that

a={gxb)+0=qxhbhb

S0 bla.
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There iz a small point of confusion which may develop here and should

be pointed out. Sometimes the process which we carry out in divigion is
called the ''divigion algorithm'. This means that we have a certain
sequence of operations, closely related to the above Division Algorithm,
which we memorize and carry out on numbere and which lead to a desired
regult. In this unit the word ''division" will refer to these operations and

the worda Division Algorithm to the general mathematical principle.

Exercises:  Analyze each of the following divisions to show the

application of the Division Algorithm. (Write as a = bg + r for some

whole numbers a, b, gand r as in the Division Algorithm. )

1, 98 == 12 =61 2
2, 125= 25 = §

3. 49 53971 4

3.3 Least Comnmon Multiple

We have previcusly defined muitiple. However, for reference, we

e T

restaie this definition:

m is 2 whole number multiple of n if there is a2 whole number
k such that v v k= n .,

Let us consider some whole number multiples of two numbers, say 8

and 12. Let E be a set of multiples of 8 and T be a set of multiples cof 12,

E= (8,16, 24, 32, 40, 48)

g-}
i

= { 12, 24, 36, 48},




I e i b e A A e S A

=58 -

Notice E and T are not the sets of all multiples of 8 and 12 respectively,
'Also notice we do not list zero though it ig a roultiple of every number., In
the gituation we have now, zero as a multiple i8 of no value to us and

would only cause confusion, What do you notice about these two sets?

One thing we can readily note ias that they are not disjoint, i, e.,

EMNT#P, and in fact,

ENT = {24,48) .

This means 24 and 48 are multiples of both 8 and 12 and to indicate this

we say 24 and 48 are comrnon multiples of 8 and 12. Are these the only

common multiples of 8 and 12? Try to think of some more. In doing this,
you should see a pattern related to some earlier work. Are all the

comnmon multiples of & and 12 a multiple of some number besides 8 and 12 ?

Let's write 2 few to see.

24, 48, 72, 96, 120, ...

We can rewrite these as
1x 24, 2224, 3 %24, 4 x 24, 5x%24, ...

Can we generalize to say n x 24 ig a cormamon multiple of 8 and 12? [t
appears so. Later we will see that this is the case. It appears that 24
is a special common multiple of 8 and 12, [t is the smallest one and it
is a factor of all the other common multiples of 8 and 12. Such 2 numbes

we distinguish by calling it the least common multiple. We record a

definition for easy reference,
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Thought exercise: Prove the conjecture thatif x is the l.c.m, of a

and b then x ig a factor of every common multiple of a and b,

Now the question arigses as to how to find the 1. c. m, of iwo given
nurabers without liating sete of multiples of each and finding the inter-’
section of these sets. Suppose we look at the sets of multiples of 8 and

12 {leaving out zero),

E={8, 16, 24, 32, 40, 48, ...}

T= {12, 24, 36, 48, ...}

Remembering earlier developmenis we can generalize elements of each

of thege sets to

an element of £ is of the formm 8 xn for n¢ W and

an element of T is of the form 12 xm for me¢ W,

Let's rewrite these in factored form as 8xn= 2 x2x2 xn and
12xm=2x2x3xm. Now by examination we can see that any
multiple of 8 must have 2 as 2 factor 3 times. Also we can see that
any multiple of 12 must have 2 as a facior twice and 3 as a factor once.
We are really describing the elements of the two sets E and T with
these statements. We are saying that each element of E must have 2
as a factor 3 times and that ecach element of T must have 2 as a factor

twice and 3 as a factor once, How then can we degcribe the common

multiples of 3 and 12, that is, the elements of the intersection of the
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setr E and T ? How many factors of 2 must there be in a common multiple ?
Ave 3 factors of 2 sufficient? How many factors of 3 must there be? Is
one sufficient? Suppose we consider numbers with three factors of 2 and one

factor of 3, that is, numbers of the form
?

2x2xexIxk for ke W,
MNotice that this is

3

2 x3xk=24nk,

This is a maultiple of 8 since 24 x k= 8 2 (3 x k) and it is also a multiple
of 12 since 24 x k= 12 1 { 2 x k), Henece we have 2 general representation

for common multiples of 8 and 12, that is,
EMNT={x|x=24xk for ke W1} .

We find the 1, c.m. by letting k =1 since 24 x k represents ail common
ranltiples and the smallest of these is when k =1, (Remember we are not

considering zero, )

The method which we usad above of finding the 1, ¢.m. of two nurnbers

can be summarized ag follows,
Suppose we wish to find the 1. ¢, m. of 24 and 28,

l. Write the prime factorization of each number, 24 = 23 x3 and

28:223:70
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2, For a multiple of 24 we need three factors of 2 and one of 3,
For a multiple of 28 we neced two factors of 2 and ocne of 7.
3, Decide how maﬁy times each prime must ba a factor of the number
which is to be a comamon multiple.
For a common multiple we must have
2 as a factor at leaat 3 iimnes because 2’.3 is a factor of 2«
3 as a factor at leastl time because 31 is a factor of 24

T as a factor at least 1 time because 71 is a factor of 28
So all comamon multiples are of the form
3
2 x3xT7xk for ke W,

To demonstrate that every mumber of this form is a ¢ommon multiple of
each of 24 and 28 we can write 33 £ 3T %k (t’ZJ 233)x T x k = (24) = (7 x k)
and 23x3 X7 x k= (22x?)):m2;z Ixk=(28x {3 x k). So the number ie

\ a common multiple of 24 and 28.
To find the ., c.mn, we let k =},
3 3
2 %3 xTxl=2 23 x7 =168,

This method can be abvbreviat@d but this shotld not be done until students

fully understand ihe reasons behind it,

Exercises:

1. Find the 1, c.m, of.C) and 15, of 40 and 20, of 60 and 225,

2. Findthel.c m, of 2, 5, and 6. This is merely an extension of

the method given above
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3, In f\i“r‘mii\ng the l.c.m. of 8 = 2.3 and 12 = 22 % 3, we toock 2 ag a

factor only 3 t;;%xand 3 as a factor once, Can you explain why we

,f'

do this instzad of 2 as &Jfactor 5 times and 3 as a factor once?

Least Cornmon Denominator

Tha main application of the 1, ¢, m jin arithmetic is in finding the
least common demominator, 1.¢.d,, of twirational numbers for purposes

of combining them, For example, consider th! problem with which we

3 5 ' .
gtarted this unit: -5- 4 1»» . We know that before wasgan combine these

rational numbers we must change their representations to™sguivalent
fractions which have the same denominators, thatis, we must find a
common denominator and convert those fractions into fractions v:msat
denominator. For convenience we look for the_{ggit. comnon denominator
which happens to be the 1. c.m. of the denominators of the two rational

aumbers we swigh to combine, We have found that the l.c.m., of 8 and 12

is 24, This is why we convert as follows:

AN and 2 . 10
g " 24 T2 24
So NI n?- ol 349.. !«2

If we wonld use another cornmon maltiple of 8 and 12, say 48, we would have
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3 18 5 20

— 5 i and o ¢ e
8 48 12 48
S0 3 5 18 z20 3 )
) + 13 = i3 F 43 4 g an angwer not in lowest terms.

This process is not wrong, and if a child can understand and nseit, even

if he bas trouble with lthe 1, €. d. process, he hae a useful skill, However,
the result %f; is not in simplest formn it would probably require another
atep to this problem which would not be needed in the case where we use

the 1.c.m. instead of just some common multiple Speaking of a fraction in

lewest terms teads us into the next topic, the greatest corrnon divigor of

two numbers,which is closely related to the I ¢ m.

3.4 Greatest Common Divisor

In the second of the problems which introduced this unit we reduce the

fraction ,}1-% to lowest terms ~§'~ ~ In doing so, we divided out the greatest

cominon divisor {or fagtor), g.c.d., of 15 and 75, We shall be concerned
here in showing exactly what the g, ¢.d. of two numbers is and three methods

of determining it.

Firvet, let's consider what the g.c.d. of two numbers, say 72 and v0
might be. First of all, it will he a divisor so let's list the sets of divisors

of 74 and 70, call these S and I respzctively.

S= f1,2,3,4, 8,8, 9,12, 18, 24, 36, 72}

N= {1,2, 3,5, 6,9, 10, 15, 18, 30, 45, 90}

AN

Note that ‘thicse sets are finite, that is, they have a finite number, 12 in




each case, of elements. How is thig different from the set of multiples

of 2 nuraber? Ts there only & finite number of raultiples of any numbex ?
The set of multiples of a nu,mﬁm' isg all products of that number and whole
ramn bers, go it cannot be finite Mow back to divisors., The divisor of a
auwmber must be siealler than the number. Thue the set of divisors

necessarily containg only & finite numnber of elements.

Second, the g.e.d  of 72 and 90 will be a2 cormmon divisor of 72 and
90. Let's take the intersoction 0f the ¢ & and M io find cotnmon

divigors of 72 and 90.
sfi» =141,2, 3 6 9 18)

How does the intersection of the s«tc of “nwitiples of iwo nurnbers compare
with this? For one thing, this set, SV ™, is finite and the set of common
multiples of two numbers g infinite. For example, the set of multiples

of 4 iy {excluding 0)
fa, 8, 12, 16, 20, 24, ...}
and of 5 iy

f5, 10, 15, 20, 25, 30, 35, ...

z
—

The set of cormmon multiples of 4 and 5 is

fa(),, "ﬁ:ov 60,) - ,“?’ e

Rermnember that this happends to be the set of multiples of 20 so it is an
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infiuita get. MWotle that boih setls have 3 wnzllest element:

1 for the set of common divisors and the 1. e.m  for the set of multiples,

Third, the g.c.d. will be the greatezst nuwmber in the sei of common

divisors of 72 and 90, Taus, the g.ec.d. of 72 and 90 is 18,

Now, using these 'deas we define, g c.d,

Definition 13 , The largest nuraber which divides two whole
numbers is called their greateet comwunon divigor.

It is svandard to syimnbolize the . «.d. of two numbery 2 and b by (&, b). L

Look at the set of common divisors, SN N, of 72 »nd 90 in relation
to 18. Fach of the commmon divisors divide 18.  Might thiz be true in
general? Ouppose we investigate the factorizations of these numbers to

see if we can see why each comracn factor divides the p ¢ 4.

Té = 23 X 32 and

) &
Wer2xdI x5

e%e ‘?‘ . 5y "
We have gegn that 18 ~ 2x 3 is the g.oc.d. of 72 and 90. Suppose we

s . , 2
regroup the factorizations af 72 and 90 so that the factor of 18 = 2 x 3

iz obvicous

T2 = {2 x 323\ 3 2&3

4

90 = (2 x 3"2»;& 5
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, . . 4
Fiote that there ars no common tactors of 72 and 90 other tham {2z 37),
g : -4 : - » 2 “ . 1 o

This is as it should be gince 2 % 3° = 18 iz the g.c.d, This also means
that any common factor of 72 axd 90 must be scme number with no more X
prime factoxs than one factor of 2 and two factors of 3. Henne, any cornmon

factor of 72 and 90 muut have the sarne factors 28 1% and in equal or
fewer number, Thus every cornmon factor must divide 18.  Thiz discussion

should gaggest another wnethod of finding the g.c.d. of two numbers besides

finding the intexsection of two sats of divisors Consider 120 and 108,

’

Factor these numbers into prime factors,

120%26334:3:}?;5

2

108 = 2° 5:33)

We see that for a nurnber o be a cormmon factor of 120 and 108, the
greatesi number of factors of 2 it carn have i3 two and the greatest nurnber
of factors of 3 it can have is one. It can have no factor of 5 becaunse then it
would not be a factor of 108,

Henece, the greatest common factor will he

2
d %3 =12

We can see this clearly if we regroup the factors of 108 and 120,

108 = (2% % 3} x 3%

120~ (2% % 3) x 2 2 5

2
&
4
-
E -
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Theue ave no common factors other than the two 2's and the one 3

Let's ~heek our generalization about all common factors dividing the g.c. d.
The set of fartors of 108 is
A = ‘I{B‘D ZU 3»‘ 4‘}: 6)) 9;} 12” 13)} 2753 3éb 5"‘%}) 103}'

The sct of factors of 120 is

&}

Be={l, 2 3 4, 5 6, 8,10, 12, 15, 24, 30, 40, 60, 120}
The set of common factors is

A B ={l, 2, 3 4, 6, 12},
Each comvmon farter divides the g.c.d. This generlﬂizatitm always

holds and car be used as au alternate definition of g. . d.

Definition 14 . The §. & ¢. c¢f two whole nummbers is a whole nurmhber

g . which has the {ollowing two properties:

1. It divides both numbers,

&, Any common factor of the two aumbers divides g .

Kxercises: Find the g, ¢ d. of the following pairs of numbers by two

MLTID B AR o CIMUN . f

m ethods. X
. {8,16)
20 (251) 45»

3, (108, 48)

4. {54, 36)
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Lo tidzan Algorithin

———— o s o

An alternate method ot finding the g. ¢, d. of two numbexrs which
closely resembles the provess of division and is in fact based on the
Divigion Algorithm has been developed. This method is called the
Euclidean Algorithm. A spacific example follows,

Sappose

we find the g. ¢.d. of 356 and 956,

1, We first divide 96 into 355%.
3

96 J 356

288

68

2., Next, we divide the remainder of this division into 96

1
63 V96
68
28

3. Again, we divide the remaindar into the divisor,

2
28 ) 68
56
12
4. Again
2.
12, ) 28
5. Again

4 /) 14
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This process terminates when we get a remainder of 0, The g, ¢. d.

of the two numbers ig the previous remainder, in this case 4,

Let's check by a previous method to see if 4 is indeed the g, . d, of

96 and 356,

Factoring into primes, we have

Z 3
96::25:4:3&{2):;:2 %3

356 = 422» * 89

S0 the g. ¢, d, is 4 and apparently the above process works. We
should ask why, [t appsars on the surface to be a hit and miss rethod
which just happends to work. 7To show that the use of this method in
finding the g.c. d. is justified is a rather «:omplicateéi and involved
process, It would not suit our purpose to preseant it here. Such a

justification may be found in the appendix.

S0 to find the g, ¢.d. of two numbers we may use the process called
the Euclidean Algorithm. For convenience, a suminary of the steps of the

process follows,

To find the g.c.d. of two given numbers we

1. Divide the smaller into the larger, obktaining a remainder T,

2., Divide rl into the divisor of No, 1, obtaining another remainder

X

2"

3. Divide this remainder r_, into r , the divisor of the second division

& 1

to obtain a remainder r3 o
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4, Continue this process of dividing each new remainder into the B
previous remainder (used as a divisor the time before) until we get a

zero remainder,

The last non-zero remainder is the g, ¢, d. of the two original numbers,

Note that we are not concerned with any quotients, only the remainders,

Exercizes:

l. Find the g.c.d, of the following pairs of numbers by use of the

Euclidean Algorithm,
a, (24,284)
b. (85,25)
e, (21,49)

2. Find the g.c.d. of 8, 32, and 60, (Review what the g.c.d, of

two numbere is and then extend this same idea to 3 numbers),

Reducing Fractions

The g.c.d, is vsed most often in arithmetic in reducing fractions,
What we need to find to be able to reduce a fraction is a nurnbeyx which is
a2 common factor of the numerator and denominator and preferably the
largest common factor. Generally, the factorization method of finding

the g.c.d. is most profitable in this light. For example:

Reduce the fraction -lé%é to lowest termas,
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Factoring, we have
,
126 =2x3 x7

84 = Zz x3Ix7
Then locating the g.¢.d., we can show

126 = (2 x 3 x7) x 3

84=(2x3x7)x2

126 ,2x3x7 3 _ 3._3
So g = lgxax7l* 3 =W=x(3)= 3.

It is obvious if we write it out this way that the g. c.d, has been factored

out of both the numerator and denominator giving a fraction equai to 1,

Relationship between g.c.d, and 1, ¢, m,

There is an interesting relationship between the g.c.dand l.c.m,
of two numbers which has not yet been made obvious, An example should

help us see this relationship; consider 84 and 126,

Find the l.c.m,

8422233::7

126z2x32x7

The 1. ¢, m, of 84 and 126 is 22 x 32 x7 = 252

Find the g.c.d.

84=(2x3x7)x2

126=(2x3x7)x 3




So g.c.d. of 84and 126 =2 x 3 x 7 = 42
Consider for a moment the product of 126 and 84,

126 x 84 = 10484,

Suppose we factor the product,

10484 = 23 x 33 p 72

and rearrange the factors as

3
10484$23x3 x'l’zzs(4'!zf.3::7)):».:(22):32x?)c

= 42 x 252

After we multiply what do we have on the right? The g,c.d. of 84 and 126

times the 1,c,m, of 34 and 126, Let's try the pattern again, Consider

75 and 3‘0.,

Factoring:

75::2::52

30=2x3x5
For l.c.m,, we have

2x3x52’=‘-"»150

For g.c,d. we have

3 x5=15




e

The product of 75 and 30 is

',‘
75x30%2250w2x32x5" t%(SxS)x(Zx3x52)

=15 % 150 ,

Again the product of the two numbers is equal to the product of
the g.c.d. andl.c,rm, of the two numbers. This is a general pattern
which occurs for any two numbers, i.e., for any two whole non-zero

numbers a and b, the following equation holds:

axb=(g.c.d. of a and b)x(l.c.m, of a and b ).

Exercises:.

1. For each of the following pairs of numbers, show that 2 x b =

(l.c.m., of a and b) x({g.c.d. of a and b))

a. 24 and 284
b, 21 and 49

¢. 140 and 350

2. Considering the above éxercises, suppose you are given the
l.c.m, of two numbers, how could you find the g.c.d, by a new method

not mentioned previously? Try your idea for 200 and 440 which have an

l.c.m. of 88, 0G0,

What about 2 case in which you are given the g. c.d. ‘and want to find

the l.c.m. by a new method?
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Unit 4 ENRICHMENT TOPICS FROM NUMBER THEORY

4.1: Why Use Number Theory For Enxichment’? b

As has been mentioned earlier, number theory is an excellent area
from which to take enrichment topics for use in elementary achool
mathematics, For one thing, as you have seen, many problems in this
area can be ‘ataﬁed very simply and in terms of the gsimplest numbers,
the whole numbers, Also, the history of number theory is one of the
richest and longest of any of the branches of mathematics and contains | (
many fadcinaﬁi'ng stories. For example, number theory really began as a
mystical, religious study of numbers. Numbers were assigned magical
powers and were considered things that actually existed rather than
constructs of the mind, There was actually a secret society devoted to
the study of numbers the members of which swore an oath not to reveal their
secre‘ts or teaching about numbers. Murnbers were namsd according to
what properties they‘ were thought to possess. For example, there were
friendly numbers, peifect numbers, abundant nimbers, and defective numbers,
square nwnbers and triangular numbers, all with certain properties to be

discussed later.

Number theory can also give youngsters a look at the way great
mathematicians in the past have worked, in a context the youngsters can

understand. There are many patterns which occur in simple addition and

multiplication of whole numbers that youngsters can recognize. By
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observing these patteins, the elementary student can "'discover' on his

own and feel that he is really doing mathematics rather than learning

rules and memorizing algorithms, Topics from number theory which can

be understood by youngsters should be presented to them for their enjoyment
and mathematical development, A few such enrichinent topics are presented
in the following material. This material is suggested not only as enrichment
material but also to give the reader a longer and deeper look at the theory

of numbers.

We have thus far barely scratched the surface of this area of

mathematics. Now we will dig a little deeper.

4.2: Ancient Number Theory

Scne cornments have been made previously about ancient secret
orders which had as their purpose the study of numbers. One such group
was the Greek Pythagoreans. This group was formed by the Greek mathe-
matician Pythagoras (¢, 550 B. C. ) whose name you may have heard
menticned in relation to 2 famous theorem in geometry. Pythagoras wae
a pupil of Thales, who is thought to have done the first work in number
theory, It w‘as a general practice among members of the society to
attribut; all credit for each new discovery to Pythagoras, himselfo 80
we cannot be sure about his contributions, but it is thought they were

very great, The farnous philosopher, Piato, was a student of the

Pythagoreans,
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The Pythagoreans aitributed mystical powers and human characteristics
to many numbers. The even numbers were thought to be scluble, feminire
and pertaining to the ’earthly,, and odd numbers were regardéd as indiaséluble,
masculine, and of celestial nature, One (1) stocd for reason, two for opinion,
four for justice because it was the first product of equals ( 4 = 2 x 2), Tand
five suggested rharria.ge,, the union ¢f the first mnasculine and feminine
numbere ( 5= 3 ¢+ 2), One (1) waz not considez&ed an odd number, i:ut rather
as the source of 21l numbers, since 2=1+1, 3214141, 4= 141 +1 ¢ 1,

etc,

There ig a striking similarity to these attributes of number in
ancient Chinese mythology, Here the odd numbers 'sym"oolized white, day,
heat, sun, fire, and the even numbers symbolized black, night, cold,
matter, water, earth, Magical powers were also atiributed to numbers

in this mythology.

In Judaeo-Christinn traditions there are certain numbers recurring
often. Forty days and forty nighte of rain, Mosee conferred with Jehovah
for forty days and forty nights, and the childrer of Israel wandered forty
years in the wildérness; There were the seven deadly sins, the saven
virtues, the seven spirits of God, seven joys of the Virgin Mary, and

gseven devils cast out of Magdalen,

b

The Babylonians preferred sixty and their gods were assiciated with

the numbers up to sixty, the number indicating the rank of the god. Also,




their namber system wag based on sixty in a manner sirnilar to the way

ours is based on tea.

Mumbers related in a ceriain way

If we congider the sets of divisors of the two numbers 220 and 284
we notice something very peculiar, 7The seis of divisors of each are

{excluding the numbers themselves)

of 220, {1, 2, 4, 5, 10, 11, 20, 22, 44, 55 110 }

of 284, {1, 2, 4, 71, 142} .
¥ we add up the divisors of each wa get an interesting result,

14243 45+010 411420422 4 44 4+ 55 + 110 = 284

V4244470 4242 = 220

The divisors of each add up te the other !! The Pythagoreans knew of
such pairs of numbers (in frct, they kaew of this pair) and céllad them
irieﬁﬁiy or amicable numbers, The Hindus also knew of them, possibly
before the Pythagoreans, and a good omen was atiached to such numbers
by them. Almost a hundred pairs of friendly numbers are known today
{220 and 228 is the amailest pair) but nothing has been proved about how
many there actually are of them, Another pair is 1184 and 1210, Can

you prove it?

Numbers were also classified as to how they compared with the sum

of their proper divisors (that is those divisors which are less than the
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given number). For example, the set of proper divisors of 12 is {1,2,3,4,6} .
The sum of these divisors is 16, The number 12 is called a defective (or
deficient) number since it is less than the sum of its proper divisors. Consider
the set of divisors of 14, less than 14, 1,2,7} . Their sum is 10. Fourteen

is greater than 10, so 14 was called excessive, Now the question arises:

Is there a number whose divisors less than the number add up to the number
iteelf? [t was known by the Hindus and Hebrews that there are such numbers

and thess were called perfect numbers, The smallest one is 6. The set

divisors of 6 which are less than 6is {1, 2, 3} and 1+ 2 + 3 = 6. The number
8128 is also a perfect number, Very few such numbers are known today

(20 were known in 1961), and it is not known whether an infinite number of

them exist or not, Eueclid, whese name seems to crop up everywhere in
mathematics, discovered a formula which gives even perfect numbers. One
interesting fact is that all perfect aumbers discovered to date are even, [t

is not known whether odd perfect nurnbers exist or not, [t is known that

any even perfect number must end in 6 or 8,

Figurate numbers

In early Greek days, notably by the Pythagoreans, nurnbers were
recorded by dots. These dots were arranged in arrays which suggested names
for the numbexrs and also allowed properties of the numbers to be derived

from the geometric configurations. Consider the following arrays rep-

resenting the numbers indicated,
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From The configurations, numbers such as 1, 3, 6, 10, and 15 were called

triangular numbers and numbers such as 1, 4, 9, and 16 were called square

numbers., (One (1) was considered to be both a square and a triangular
number.) We might note some interesting facts about these numbers., Con-

sider first the triangular numbers. Note that

1=1

3=14+2
6=1+24+3
1014243 +4

15=14+24+34+44+5

Do you see the pattern ? What would be the next triangular number after

15 ? Is it 21? Is the next one after 21, 287 Think of the joy of accomplish-
ment an elementary student could experisnce in discovering this for

hirnself. If we look at the rows of the geometrical arrays for these numbers,

we notice something very similar,

¢ 1

— bwr wme e
[ 1 [+ o 2

”“‘I-‘w
1 VA -5 3
9 o [ ] 2,

1 PO — ) Z "”"'""‘"-3 — - - 4

« ] o 3 < o o o o

Thou&ht Fxercise

The first triangular number is 1= 1, thr second is 3 = 1 4 2, the




thirdis 6 =142 + 3, and the fourthig 1051+ 2 43 + 4, What would
you guess the seventh triangular number to be? The tenth? Try to

generalize this. What would the nth triangular number be in terms of n?
Now let's look.at the square numbers,

I =11

42202=2°

9%3"3«':232
e

16=4- 4= 4
Do you see the pattern? What ig the next square number after 16? s it 25?

Thoghﬁt Exercise

Notice that the first square number is 1, the second is 4, the third
is 9 and the fourth is 16, What do you suppose the seventh one is?
Check your answer with a diagram., What do you suppose the tenth one
is ? The twenty-fifth? Generalize and tell what the nth one would be

in terms of n.

2
Above we notice that the square number 4 was equal 2 , We say 2
| 2
in words as '2 squared'. Alsowe say 3 as '3 squared", [n general,
we say n  as ''n squared', What do you suppose is the origin of this

termn ?

There is an interesting relationship between triangular and square

numbers which we can discover by looking at the array of dots representing

them,
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Notice the lines that have been drawn in the square numbers. What has

been done with each square number? [t has been divided into two }Eansular

numbers !' That is,

1=1
4=14+3
9=3 4+ 6
16 = 6 + 10,

In fact the second square number has been divided into the first and second
triangular aumbers, the third square number has been divided into the
second and third triangular numbers, and the fourth square number has
been divided into the third and fourth triangular numbers. Might this be
true in general? The reader might try his hand at proving it. It is true,
though it will not be shown here, as it would necessitate a knowledge of
algebra not assumed in this material, Think of the motivation that
discovering such patterns would give to a youngster, urging him to

press on to try other triangular and square numbers for other patterns.

Flementary number theory is permeated with such possibilities for discovery.

More on primes

We have previously discussed prime numbers in 2 general way,
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We will now look at some specific relationships, Consider the pairs of
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primes 3 and 5, 5 and 7, 11 and 13. The numbers of each pair differ by

two, Primes of this type are called twin primes and many have been

known since antiquity. It is not known whether there iz an infinite number
of such pairs or not though it has been known since 1919 that these become
rarer and rarver a# numbers increase. Ae haz been mentioned earlier,
Euclid proved that the number of primes is infinite and thisz roay suggest
that many quegtions about prime number pairs or triples, etc, could be
angwered in the same manner, but this has not yet proved fruitful in

the case of twin primes,

Exercises:

1, Determine whether the following nurnbers are perfaect, defective,

or excessive,

a, 28
b, 25
c, 36
d. 496
e. 225
£, 144

2, Show that 96 and 115 are not friendly numbers,

3. What is the ninth triangular number? Show it as a triangular array,

What ig the twelth triangular number ?
4. What is the arithmetical difference between the second and third

triangular numbers ? The third and fourth triangular numbers. The
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fifth and sixth? The twenty-fifth and twenty-sixth? The nth and the
n + 1st (the number following the nth)?

5. What is the ninth square number? The twelth? The twenty-fifth?

6. Of what two triangula;' numbers is the eighth square numbar (64)
the sum? Of what two triangular numbers is the ninth square number
the sum? The twenty-fifth square number? The nth?

7. What is the arithmetical difference between the first and second
square nurnbers? The gecond and third square numbers? The third and
fourth? What is the pattern? Try and generalize thia.

8. Determine which of the following are square nurnbers.

a, 15
b. 36
c. 121

d. 143
e. 144

9. Determine which of the following are triangular numbers,

a, 28
b, 48
c, 45
d. 178

10, The Pythagoreans also called certain numbers pentagonal and

hexagonal. For example




some pentagonal numbers are

Lines have been drawn in to help you see the shape and how the figures
2re formed. Try your hand at discovering patterna, What are the

arithmetic differences between successgive numbers of each type?

Is there any relation between pentagonal and hexagonal numbers? Beiween

these and square and triangular numbers?

4.3 Some Famous Theorems and Conjectures

One conclusion about mathematics to which most students seem to
come sometime in their elementary training is that mathematics is a fixed
and unchanging body of knowledge in which all problems are solved and no
questions gtill 'unanaweredo Many times this serves to leave them with the

s@gnant . .
feeling that rnathematics is - and unrewarding to study, All too
often we perpetuite this misconception by our mmphlasia on rules which
must be accepted without question and ‘drills which must be carried out.
We must try to do juqt the opposite, It is necesavary that students leave
us with the impression that mathematics is a vital growing subject,

that there are many unsolved problems and new areas to explore, The

theory of numbers can offer some concrete examples,

some hexagonal numbers are
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‘There are many farnous, unsolved problems in thé theory of numbers,
Most of these go by the name ofa, conjecture, usually associated with the
mathematician who first formulated them, One of the most farmous of
these is called a theorem, though it really is still a conjei:turev as n’o
proof of it has ever been recorded. It comes to us from a famousl French
mathematiciar of the seventaenth century, Pierre de Fermat. This man
could have been credited with important discoveries in many fields of |
mathematicsf He might have ranked with Descartes in analytic geometry,
with Newton and Leibniz in calculug, and with Pascal in probability,
Unfortunately, Ferrnat seemns to have had very little interest in publishing
his results zo the aforement'io'ned gentlemen are credited above him in -
the listed ficlds. This disinterest >f his in publishing beings us to one
of the most famous unsolved pr‘obl.ema in number theory, sometimes called

Fermat's last theorem,

The story of Fermat's last theorem really goes back to the ancient
CGreeks and to one in particular, Diophantus of Alexandria (c. 275 A, D, ).
Diophantus wrote a work called the Arithmetica which brought together
the algebraic knowledge of the Greeks, In this work, there was & discussion
of a theorem well-known to anyone who has studied plane goemetry in

school, This theorem is the so-called Pythagorean Theorem, What is

says ig this:

Given any right triangle whose sidas are of length a, b,
and ¢, ¢ being the length of the side opposite the right
angle, then the following relation holdse for a, b, and c.




In the Arithmetica there was a discussion of triples of integers a, b, and |
i N

¢ which satisfied the above relation. Two examples of such triples are:
a=3 b=4, andc=5anda=5 b=12, andc=13. We can show that

these are triples satisfying the above relation as follows,

32+4z%~9+16f525=352

80 32-#42:52

-~

2
and 52'0'1225225‘6'144:169%13 5

So 52 + 1zz = 132 0

Obviously enough, such triples of numtbters are called Pythagorean triples.

Rules were given in the Arithmetica for determining Pythagorean triples,

Now let's return to our hero (or villain, whichever the case may be),
Fermat, He had obtained a translation of Diophantus' work and was very
intrigued by it. He studied the Pythagorean triples and tried to make
generalizations, Qut of this came his last theorem. In the margin of

his copy of Diophantus, he wrote (this ig paraphrazsed}.

“It is impossibie to have 3 integers

a, b, and ¢ such that

a3+b3aﬂ'¢:3

or a.4~ﬁ-b4$c4

Or, in general, for any n greater than 2 it is impossible
to have three integers a, b, and ¢ such that

n .n n
a +b =c¢ .

I have discovered a truly wondexful proof for this but
the margin is too small to hold it, ! '

Aruitoxt provided by Eic:

ERIC
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He never published hiz proof. Mathematicians, both brilliant and not
go brilliant, have been trying ever since then to prove or disprove his
conjecture, It has been proved for some particular values of n, but
as we have seen this does not suffice to prove it in general, In fact,

it hagz been proved for sorne values of n up to 250, 000, 000,

Exercise

Another set of Pythagorean numbers is 6, 8 and 10, We can check
this by

62 + 8% = 36 + 64 = 100 = 10°

Hence 6z % 82 = 10Z o

What relationship can you see between this set of triples and the set

3, 4, and 5? Try the set 9, 12, 2nd 15, Is this a Pythagorean triple ?
What would be another Pythagorean triple? Can you gensralize? Try
your generalization on another set of Pythagorean numbers, say 5, 12
and 13, What does this suggest about the number of Pythagorean triples?

(How many are there?)

Another famous conjectare is that of Goldbach, 2 Prussian mathe-
matician of the eighteenth century. Goldbach's conjecture deals with

prime numbers., We can easily develop this conjecture by observing

the following:




| ] * . m{:‘%c}c

=141
=143
343
345
= 34+ 7
12=5 4+ 7
14=7 47

&b

o & O~ A W
3

On the left, we have all éven ﬁ;x;ﬁ"nbera through 14 (excludiqg 0). What
do we have on the rigknt;? What kind of nurber is each nurnber in the
sumsg? A prime !! Wé':«might con’jecture that "every even number

is the sum of two primes’. Such a simple statement should be very
easy to prove, after all we know a lot about ever numbers and 2 lot
about primeeg, There is ome sour note, Mathematicians have been
trying for 200 years te prove it and have not yet succceded !! It is

interesting that it has been verified for 21l numbers up te 10, 000 and

some beyond, But it may be wrong for 10,563,264 !! Again, we
have an example of a gtatement which is known to be true in manay
specific cases but has not been accepted because no one has proved

it in general., Such is the nature of mathematics .

Exercisce

Write all even numbers up to 50 ag the sum of two primes, Can

any even number be represented as the sum of two primes in moxre than




one way? Can the sum of two primes ever be an odd number?

We have menticoned in a previous chapter that a formula has been
discovered which gives the approximaie number of primes less than a
gi;reri number, Some moie specific theorems have been proved about
the occurrence of primes in intervals between numbers, For example,
in 1845, the French mathematician Bertrand conjectured that between
any number and its double there iz at lzast one prime., For example,
between 3 and its double, 6, there is the prime 5. Betwoeen 10 and 20
thers is the prime 13. Between 50 and 100 there is the prime 89, Fifty
years after Bertrand's conjecture, the Russian Tchebyshev proved it,
In 191}, Bonolis inproved on this by giving the formula approximating
the number of primes between x and -g %, for any x, that is,

between a number and arnother number half again as large.

Exercige

Find a prime between 15 and its double ; between 20 and its

double ; between 75 and its double. Can there be more than one?

We would not need to stop here in ocur lock at famous problems,
solved and unsolved, but the list iz endless and we shall not gu on.
If your curiosity has been whetied, then the desired end has been
accomplished, Ii is hoped that you have heen stirred to make a
deeper searc.. into mathematics in general and the field of number

theory in particular, Little more needs to be said except tc reatate

]




the conviciion that the theory of numbers is a field of mathematics
which can make important contributions to the teaching and learning
of elernentary school mathematics, [tz imporiance and value as a

motivational device and as a representation of mathematical beauty
and truth should not be overleoked, If you are convinced of that

then these units have served their purpossa,




Appandix
L The set of primes iz ean infinito set.
Proof:

A discnssion which cen be interpreted as e proof of thiz shsbament
wes given by Euclid over 2000 years ago. %he proof glvem here is simdlov.

It 18 of the type called an indirect pruof. Recall that this method was usod
in proving that ths set of even mmbers and the set of cdd munbers ave disjoint.

The indirect mwthod proceeds as follows. Ye asmme the opposite of
vhat ve want to prove snd seo vhere it lecds us. Xf such an asscmption leeds
to something talse or centrudictory then we know the sssumption wes false and
hence its opposite mist be true.

Thus wo begin the proof that the set of primes, P, is infinite with the
assumption that this set s et iofinite. This i3 equivalenst to saying that
Yow et To Pnlte. Yo beve oot wpsken nf the relatfon tedween Snd e At
tnfinite sere, wh o4 aet $m either sne oo the gther  There are o “ther bopes
L hdA wome.

Now, one mmaning of the statarent that the set of peimes, P, is finite
is that we could meke a complete listing of the set, such as,

P= 1y Py Pyo covs By o
This says that Pyr Ppo p3, w0y By is a Meoting of all the priwve mmbsrs and
that there are only n primss.

Let k be a naw mumber formed by muitiplying oll the primes Sogether
and edding 1. %hen
(A km((yl:zpaxpzmowxpn}  Jo

Yew k 12 larger than any of the primss. We woibes this as
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and say "pl is leas than k", "p2 15 less than k" and go en. Also k is either
prime or composite, since it 1s neither O nor 1. (1t 1s mot O becaunse it is
equal to some mumber plus l. It 1s not 1 since this would be the cuse only if
kwO+ 1
go that
plxpax cee X P ™ 0.
This weuld mean that oue (or more) of the primes wez O, but O is not & prime. )
Row we will check both of the casest {1) & 1s prime and (2) k is
conpesite to see vhers oach leads us.
(1) Suppose k is prime.
W‘sddkilllrgﬂ'thmmofthepﬁmnin!aokcmtbemP.
This contradicts the assumption that P is the set of all prinea.
Thus case (1) leads to a contradiction.
(2) Suppose k 1s caposite.
Rocall that a compositc mumber has factcrs other than itself and 1
and in fact has prime factore (by the fundsmental. theorem of arithmetic).
Thus there 18 a prime vhich is & factor of k. Since P containg all the primes,
this factor of k has to ba an e¢laement of P. Suppove it is py-
Ancther way to pay thab Py is a factor of k 1g to suy "Pl divides k" or
» | E
Since Y is a factor of P 2P, X p3 X veo XP, Py divides
(p, x 2, x Py X +se pn) or
Py | (o, XDy 2Py % oo0 X7 Ye
Thup we have that

() pllkandpll(plxpzsapr..oxpn).
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We will now use sn exercise from sectlon 3.2. This was
if a|bandal c, then 2| (b=~ c)
Mopluﬂmmkm(nlxpaxp3x...xpn)itdivmes
their difference.
(e) plllk-(plzpexpr...zpn)].
Becall that

k-(plxpaxpru..zyn)-rl.

80

(») k-(plxpeanx...xpn)-l.
Fron equation (D) and statament (C) we have

(E) I

tndthinmthatplmllincothoonlyvhohmblrdiviwtﬂlulo
We now have a contradiction. Hehavethatpl-landplnpm
which cannot be since 1 is not prime.
The assumption that led us o this contradiction is that p, | k.
Recall that this came from our assumpticn that k is composite and that it
thercfore must have a prime factor.
BmouinmmofplﬂahldtnmP,‘,tonthem‘MﬁcWofk.
Can you ses that this would make no difference? In mathematics we deal with

gensralizations s0 that we may prove things with one general case rather than
nany specific cases. Inau'mofwecho-eplutheptmmatdiudedk.
nmmmmngmidwmtplmdammthatvehwemmmm
Wafupaorp3wanye£thlmimaainm

Thus no prime in P con be a factar of k, because if we agsume that
oud of them is a facter of k we arvive at the contradictiom that the prime
mist be 1, as in (E).
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S0 if k is composite then there must be szome prrime which is a factor
of 1t that is not in P.

(3) Sumary.

vonmedvithamaprma,'?, that we assuned to contain all the
primes. We farmod a new mmbey k, from all theze primes by taking thelr
product and edding 1. We saw that k vas not in the get P.

It k vas prims then P could not be the set of all primes. Also, we saw
that if k was composite then 1t had to have & prime factor that was some
prime not in P. In either case P could not be the set of all primes.

Thus the assumption that P contained all primes led us to the conclusion
that there wvas a prime not in P. Obvicusly, the conclusion contradicts the
originsl assumption. This tells us that this assumption, that P wvas & finite
set, must be false. We also said that P must be either finite or infinite.
Thus F must be infinite.

II. Use ef the Euclidean Division Algorithm to find the g.c.d. of two mumbers.

We will first use the algoritim to £ind a mmber associated with 18
and 8. We will then show that this mmber is the g.c.d. of 18 and 8.

Recall thet to £ind the g.c.d. of two mmbers by use of the aigorithm
we £irst divide the amaller of the two mumbers into the larger. Next we divide
the remeinder of this diviasion into the divisor of this division. This process
of dividing the remeinder into the ;!ivisor ie contimued until a z&ro remainder
is obteined. The lest non<zero remainder is the desired nuvmber.

A. Find the g.c.d. of 18 and 483

(1) 2 (2) 1 (3) o
18 T\~ 12 TiB 6 TI2

ig 12 12

6 0
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Thus 6 is the mmber determined by the algoritim.

B. &how that 6 is a common divisor of 18 and U8: For this special case
all that is needed is to divide both 18 and 48 by 6. Hovever we shall ugse a
mimlv-dmcoubecmeitcmbemdointoawwootofthe
process for gll pairs of mmbers.

() We xnow fror (3) above that
12 =6 x 2.
This means that 6 | 12.
(5) Prom (2) we know that
Ba(l2xl)+6
(6) Prom (4) we know
6| (12 x1). Also we know
6| 6. |
Fram & statanent (thearem) vhich we proved on page 53 we know that
ifa|banda| cthena| (b+ c). Using this, we
have 6 | (12x1) end 6| 6, 90 6| [(12x1)+ 6] or, since in (5) we
have 8= (12x1)+6, 6] 18.
(7) I£ 6 | 1B then 6 is a factor of iB end it is siso a facter
of Bz2e 6| (18 x 2).
Using the theorem from page 53 again,
6| (1Bx2)aa 6| 12

6 | [(18 x 2) + 12].
or since

(1Bx2)+12=h8

6 | u8.




(8) Nov we have
6] 48 ana 6| 18.

Thus 6 15 a cammon factor of 18 and 48. We have not yet shown that
it is the greatest cammon factor. To do this we nead to show that any commen
factcr of 10 end U8 divides 6. (Sce Definition 14, pege 68.)

C. Show that 6 is the greatest common divisor of 18 end 48.

(9) 1Let c represent zny common factor of 18 end 48. Now we want to
show that ¢ | 6.

(10) In (5) we saw that

Be(1221)+6=12+6
From this ve can get |
12«18 -6
(11) From (1) by the Division Algoritim wo can get
48 = (18 x 2) + 12

(12) 1£ we substitute for 12 in this equation the expressiocn for 12
found in (10) we get 48 = (18 x 2) + 18 - 6.

We can substituto 18 x 1 for 18 and get

B8 = (B x2)+ (1Bx1) - 6.

Then by the distridbutive law

IB«18x(2+1)-6
= (Bx3) -6
From this equation we cen get
6 = (18 x 3) - U8.

This is the equation we want because it is in terms of 6, 18, ama U8,
the nunbers in vhich wve are intaorested.

e




(13) let‘s consider c sgain. We know that ¢ is a cemmen fuctor of
18 ana 48 »o |
¢ |18 ava e | 48.
(Vi) Bow it c | 18 then c | (18 x 3).
(15) Alsoifr c¢| (BB x3) and c | ¥8 then by exercise 3 on pege 54,
e | [(18 x 3) - 48].
(16) Frem (iZ} wo have

Thus
e | 6.
This i8 vhat ve wanted to shuw. ¢ represents any cumon factor of 18
and U8 and we have just shown that c | 6. But 6 13 the largest factar of
itself, 6, hence 6 is the g.c.d. of 18 and k8.

We heve not readlly proved anything except that the Euclidesn Algorithm
cal be uwsed to find the g.c.d. of 18 and 48. This is got sufficient to prove

that it werks in gensral. To 45 this we womld have tv make a preof dealing
with gensral mmbexrs and not spocific cnes. Many times in matkhematies it 4s
imtiwwmmaWcmbemgdfwmmcuiccmmm
use this as a model for a more gonexral preof.

A gensrol procf that the Buclidean Algorithm can be used in all cages
ig not given here es some tools ave nseded that we do not have st our digposal.

The general proof prceeede vwerxy much in the some mmuaner as we heve seen for 18
and 48. The Division Algoritim is used 25 we did in (&), (5) and (11) only in

& more genaral form such az for overy pair of positive integers a and b, thars
are tvo other positive integers ¢ and r such that a » bg + r vhere r < b,
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Yes
610 = 2 % 305 52l w7 N 162 Mook = DX B1E

Yes, O X v o2 X (2 X% ead A2 X n)Cw,
Yeg, 6 Lww2 X (3 Xm) el 5 R )€ W,
Yem, 36 X} 2 X (18 4 k) cad (18 X K)EW,

Thera is no viols nundrr kK .uael that 2% = 2 X ko For *“kig to 2o
true ko= 129 which is rnot o whole numteru

Thought exercig.s

1 = 09] (;. ): (.}}"fL 1
n o= 19_ (r.’f N l i ,7)
n=2, (2X2)FL 5
I (2 X 3342 7
0 a, ]
«© [
o " I

Apparen iy we do,

J

Let {2 X n}+2 and (2 X w)+1 rooreaent any two odd sumbars. Find

thair onm,

‘LJ

1

(Xl +(2 80 1) e (2 Xnr2 X m)+4 (3+1),
by the ascsoe. and comme. virivelples.
By the distreibuticn lev vz o3
2% nd m ot 2y
and wy apoiving the disuxibuvlion lavw acin

{n-+m+1;

vhich io an even numbor.,

Zo Wiy ann oof tun edd w9 2 nn T and 2 4m ) ois nam oeven punbam.
Find tar product o0 Ve S olvan odd miasoorg

24 a71) X {2 X el

[N an du g 3 'L.‘. 1.‘..’ . "

fbic is bhe sligebrade product of two hinomizl exyressiona which is
acinl to

(Cxn) {2 Xm)r{2£n) £2+(2 X o) 3171
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a2a=

or
(4 XnXm)+(2Xn)+(2Xm+l.
Using the distribution principle on the first % terms we have
2 X [(2 X n X n)+ np/+1
whick is
2 % (some whole number)-+ 1
So the product of two odd mmbers is odd.
2 x u is an oven number and (2 x m)+l is an odd number. Find their gum.
(2 xn)+ (2 xm)+1=2x (mn)+1 by the distribution principle.
This is
2 x (some whole number)+ 1

an odd number

3) Using the odd and oven numbers from exerclse 2 find their produoct.
(2 x n) x!_:(axm)*}] = (2 x1n) x(2xm)7(2xn)
by the distribution principle. Using the associative principle we can get
2x {nx2xm+(2xn)
and by the distributive principle
2 x [Kn X 2 X m)f'EZZ
gnd ever number,
| k) See exercise 1.
Poge 22
1) 2n 4 = (2n+3)+ 1 and 2a+4 = (204 5)-1
So 2n# is one more than 2n+ 3 and one leas than 2ntd.
2) Likewise, 2m+] = (2n+6)+1 and 2n+T = (2n+8) =1
3) Between 2n+9 and 2n+ll,

on+10 since 20410 = (2n49) 1 and 2n+10 = (2nt11)-lo
Between 2n+l6 and 2n+18.

on+17 since 2n417 -~ (2n416) 1 and 2nA7 = (2n418)-1,




Between 2n+ 201 and 2n +103,

2n+ 102 since 2n +102 = (2n+10i)+ 1 and 2n+ 102 « {2n+ 103)-1

Page 26
Thought exercise
8 09356:9412,15,
2 Yes
4 Yes
Yes, 0 = 7% x O,
r Page 28
1) A set of multiples of 5 = §0,5,20,15{, 0 = 5x0, 5=5x1, 10 = 5 x 2,
15«5 x 3
A ﬂet Of mu1tip198 Of 6 "{0,6,12,1?} » O » 6 xO, 6 = 6 b 1' 12 - 6 X 2'
18'6x5o

A set of multiples of 7 -59,7.14,2{} »O0=7x0,7T=Tx1, U=7x2,
21 = 7 x 3,

2) General elements of the respective sets of multiples are
3xmy bxm 5xk, 6x1,7xp. (any letters will suffioce)

3) 6 is a mltiple of 1,2,3, and 6, since’ 6 = 1 x 6 and 6 = 2z x 3,
Faotors are 1,2,3, and 6. See previous answer

12 is a muitiple of 1,2,3,4,6, and 12, since 12 = 1 x 12, 12 « 2 x 6,
and 12 = 3 X #o
Factors are 1,2,3,4,6, and 12.

) 0 e2x5x7
Factors are 1,2,5,7,10,14,35,70,

5) No. Yes. Yes. MNo.

6) n factor of n reason
,
') 5 1,5 1x5a5
' 6 1,2,3,6 1x6=6
: 2x3=6
- 7 1,7 l1xT7a7
| 8 1,2,4,8 1x8=28
’ 2x4 8
2x2x2=28
9 1,3,9 l1x9%9=9
3x3=9
10 1,2,5,10 1x10 = 10
2x5=10
. 0 1,2g3,#o-oo l1x0=0
" 2x0=«0
- 2 x0=0
o
£1{U: D M O bt s S T — ——— N Tt a

o7 . ° !
ooty G ~ . . N . - . . > B o ™
R P o N s
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1 is a factor of every whole number
1 xn=mn for any whole number, n,

Iist some elements of B,C, and D to show that they are the same as
those in A,

Thought exercise

ENP = §2 '
ENC = §4,6,6,10,00 §a11 even numbers except 2)
- 9,15,21,25.90;} all odd-numbers which are not prime)
- 595

+7911413,1Ty..} (all odd numbers which ere prime)

ongc
one

16 =1x1622x8u2x2xbn2x2x2x 2wlh x4
Factors are 1,2,4,8, and 16, -

¢

b ulx ? -2 x 2
Factors are 1,2, and 4

The factorizations of 4 are "contained in" the factorizations of 16,

4) Yes, some qualification of the term "factorization" is needed in order
to avoid the repeating of ones.

Page 46 a,
1) a) 32=2x2x2x2x 2, since

2fa
2[8

b) 18 =2x 3 x 3, since

3
i
2/18

In the same manner

3 =2x19

16 «2x2x2x2

75 w2x2x3x3

2 =2x2x2x2x17
b5 « 3 x 3 x 5

25=2x 2

700 = 2 x2x5x5x7.
B=3x5x5

R HNORO
N AN s

e b b




32-25 2
18 =2x3
38-2#119
3I.6--22 >
56-2“’!3
272-5:17
45-5215

700 = 2 x25 x T
I5=3x5

3) 3222 a2x2 =2x16
36 w22 x3°m2x(2x3) a2x18
75 = 3 x 5 = 3 x 25

The larger number "contains" the factorization of the smaller.

@ e RO O

4) 256 = 28,8ince
2 256

425 = 52 x 13, since
: AR
585 or
5/425 R
{3

1 10422
3 /5211 cr ™~

— 2 5211
210422 / SNy
2 3/ 1737

1) 24 and g/e, g/iz, 2/16 since 8 » 2 x 4, 12 =« 3 x 4 and 16 = 4 x 4
Proof:

a/b 30 b = k x & by definition. P. 48,
Then b x ¢ = (b x a) x ¢ when ¢ is any whole number
So we can get

bxocm= ?: xa)xomw(kxec)xa
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by the assooiative and commutative principles.

Then we see that

b x ¢ = (some whole number) x a

so
| a ,(b x ¢)

2) HNumerical examples as above

Proof .
a/(b +0) means that from the definition P. 48

i (b+6) mkxa

Also
a|b means
P=«lxao

Now we can get by substituting 1 x a for b
lxaso=kxa

Using some algebra we can get
cw(kxa)-(1xa)

and by the distributive principle
emk(k=1)xae.

Thus
o = (some whole number) x a.

(We really should justify that k - 1 is a whole number and not
negative. This can be done by referring to

b+o=kxa and b=1x a.

Is it not obvious that b ¢ is larger than b? Is it also not
obvious that k is larger than 1?)

So
a/ Ce
3) Numerical examples as sbove

‘ a{bmeansb-kxa anda/cmeanao-lxa.

Now
b-oc=(kxa)=(1xa)o

So
becw(k-1) xa by the distributive prinociple.

Then
b - ¢ = (some whole number) x a (as above)

A:,?(b - )




Page 57

1) 989 =« (12 x6)+2
2) 125 = (25 x 5) +0
3) 49 =(5x9)+4

Page 62

1) 9-3%,15-3x5
So l.c.m. oOf 9¢15 is 3" x5 = “50

40 = 27 x 5, 20-22135
So 1.0.3. Qr 4@20 1’ 2 x 5 = qu

60-2"x3x5 250325
So lcoem. of 60¢f225 18 2° x 3° x 5° = 900,

2) 2=2, 545, 6a2x3’
So l.0.m. 13215:3-30

3) Using 2 as a faotor 5 times and 3 as a factor once glves g common
multiple but not the least ocommon multiple.

The least common multiple oan also be found by intersection of sets
of multiples as on pp. 57-59.

1) Set of divisors of 8 = J1,2,4,83
Set of divisors of 16 = {1,2,4,8,16}
The intersection of these is {5.2,4,85

8.0.d. is 8
or
6 = 23, 16 = 2 5
So the coﬂodo is 27 = 8,

2) Set of divisors of 25 = {1,5,25}
Set of divisors of 45 « 1,3,5,9,15,45
The intersection of these is f1,5}
So the 8+ce.d. iB 5,
o 2 2
25 5%, 45 = 3 x5
So the g.e.d. is 5,

3) Set of divisors of 108 = f1,2,3,4,6,9,12,18,27, 36, 54,108}
Set of divisors of 48 = {1,2,3,4,6,8,12,16,24,48}
The intersection of these is {1,2,5,4,6,12}
So the g.c.d. is 12,
or |
108 = 2% x 3%, 18 - 2t x3
S0 the g.c.d. is 2° x 3 « 12,




4) Set of divisors of 54 = {1,2,3,6,9,18,27,58
Set of divisors of 36 = 21,2,3,4,6,9,12,18,36
Intersection of these is {},2,3,6,9,165
So the g.o.d. is 18

or
S = 2 x 3%, 36 = 3° x 5°
So the g.c.d. 18 2 x 3" = 16,

Eoge J1
1)
a) 11
2l [26% ao/i%' l;pf%
24 20
i 3
2k So the goCodo is &4,
20
b) ) 2
zs/ﬁg :u:ézf' 5/5%'
$7] =
So the g.c.d. is 5,
o) 2
21/49 7/21
/-ﬁ;‘ /-z So the g.c.d. is 7o
-7

2) 8e2,32-2,60=2°x3x5
So the g.o.d. is 2",

Page Th

1) a) w2 x3 24=2°271
1.0eM, = 22 x3x 71 = 1704
ZeCede = 2 = b

leCels X 80°¢d0 L] 170"' xh - 6816
24 x 284 « 6816

b) 2L=3xT, 49 =T
1.0cme = 3 X T° = 147
8e0ed. » 7 .
1.0eMe X g+0ede = 147 x T = 1029
21 x 49 = 1029,

¢) 140 = 2% x 5x Ty 3950 = 2 x 52 x 7
l.colte = 22 x 5% x T = 700

8000d0.21517-70




~9-

1,.0.m. X soﬂodo =700 x 70 = 49,0«)
140 x 350 = 49,000

2) g.0ud. = the product of the two numbers
¢ Cello

There is an error in the problem: l.c.m. = 2200

Qe Cotlle = % 4o

l.com. = ;;hg product of the two numbers
€eGe

Page 80  Thought exercise

142+ 3+4445+6+7 = 28
1‘* 2'* roet 8“'9 - ‘05
14 24 cee4 (n=1)+ n = the n? triangular number.

Page 81  Thought exercise
T7T =49

(7 by 7 and 49 dots)

o0 00O0OS
[ A X R N NN J
00000 OO
[ E X X N N N J
(AN KK NN ]
[ A X XN N K J
[ X X XX X K-J

10°10 « 100
2525 = 625

Nn*n = n2

1) a) Perfeot sinoe 1+ 2+ 4~+T +14 = 28
b) Exoessive sinoe 1+ 5 = 6
o) Defeotive since 142+ 3+4+6+19+12+18 = 55
d) Perfeot since 1+ 2+ 4-+8 +16+ 314+ 624124 248 = 496
o) Exoessive since 1+ 3-+5+415+25+4 45475 « 169
£) Defective since 1+ 243+ U4 +6+8+9 +12 +16+ 18+ 2U-+ 36+ 48+ T2 = 259
In each case the proper divisors of the number have been added

2) Pactors of 115 are 5 and 23 and 5 23 £ 96
3) 142+3+4 4+5+6+T+8+9 =« 45 .

e O
o o o
e & o O
®» O o o© »

1+2+ 3+ enetlles 12 .76 o.o.o.o.o.q.o

¢ © ¢ 6 o o a8 o
e 6 0o @& o & o o O




&)
5)
6)

7

9)

10)

5 ()8

6-3e3 10-6ek, 21-15a6, 260250 m 26, n+1® - 02 = pt1.
9% = 81, 12% m 144, 252 = 625.

The seventh and eighth, 64 = 28+ 36,
The eighth and ninth, 81 = 36 *4&,
The twenty-fourt t.ml tventy-fifth,
The nm and n - 1 0

b-1a3
9-busb
16 =9 = 7

All the differences are odd numbers.
The nfd square number - the n - 1't square nunber = the ni! odd mumber,

b) 36 = 62

0) 121 = 11°

o) 144 w 12°

8) 20 = 14+ 24344+54647

c l’SI 1"'2#3"‘000“'7'849
d 78 - 14‘2*5" ooe “114 12

Differences betveen sucocessive numbers

Eentegongl
5«1l
12 «-5=7
22 = 12 =« 10

Pattern seems to be a difference of 3 between sucoessive differcnces.
Hexagonsl
6~1=5

15 -6 =9
28 « 15 = 13

Pattern seems to be a difference of 4 betveen sucoessive difierences.

?

Page 688 ' Exercise

Each number is twice the oorresponding number in the first pair,
Yes, since 9°4122 u 81+ 14k = 225 = 152
The generalization is:

1f a,b,c 1is a Pythagorean triple

then a:x, bex, oex is also a Pythagorean triple (X is any whole
number)




e e AP 23l ummem

102 242 = 100 576 = 676 = 26°

There are an infinite number

Exercise (Possible answer)
2wltl 16« 5412
bw2t2 18w 7+11
6=3:+3 20= T+13
8=3+5 22 » 11 +11
10 =347 2h » 11+13
12 « 5 +7 26 = 13+13
W -7+ T 28 = 13 117
Yeos

Only if one of the primes is 2.
Exeroise (Possible ansvers)

17 is between 15 and 30

23 is between 20 and 40

79 is between 75 and 150

Definitely.

30=11419
32« 5+29
4= 5429
36 =« 7 4+29
36 = T+31
4O = 11429
’42-15-‘-29

bh o 7437
46 - 34+ 43
kg = 5+43
50 = 7+43




